Dark Matter Searches at CMS

Teruki Kamon

on behalf of the CMS Collaboration Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University & Kyungpook National University

Workshop on the Interconnection between Particle Physics and Cosmology (PPC2014)

June 26, 2014

CMS Dark Matter

June 2014

Probing Models with DM Particle

Dark Matter (DM) Marketplace

- Effective Field Theory (EFT)
- "Dark" sector Higgs-portal, Fermion portal
- R-parity conserving SUSY (with a DM candidate)
- R-parity violating SUSY (with a DM candidate from somewhere else)
- Extra Dimension

Teruki Kamon

Compact Muon Solenoid (CMS) Experiment

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

"Missing" Transverse Energy

The hallmark signature for DM is a **momentum imbalance** or missing transverse energy (= "MET")

- DM particle escapes the detector undetected
- Nature still conserves momentum (always!)
- Infer presence of DM by undetected momentum

Teruki Kamon

CMS "New Physics Searches" Charts

- ✤ Probing a TeV scale at LHC8 ☺
- ✤ No hints of NP (yet) in very diverse search programs 😕

[Note] –1 sigma exclusion limits rather than the nominal value are also available in CMS papers.

Teruki Kamon

DM (Interpretation) Working Group June 2013 April 2014

CMS Exotica Physics Group Summary – March, 2014

May 2014: Exotica MC+Theory Working Group Cross Physics Analysis Groups (Exotic, SUSY, Higgs)

Selected topics:

[Part I] Mono-X in Effective Field Theory (EFT) [Part II] Supersymmetry (SUSY) - Scalar top quark (stop), ...

Teruki Kamon

Part I : DM Effective Field Theory

DM Effective Field \overline{q}

 $\bar{\chi}$

 $\boldsymbol{\chi}$

Exhaustive list of ...

		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	Dirac fermion, 1008.17	83	Major	ana fermion, 1	005.1286	
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	M1	99	$m_a/2M_*^3$	
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	M2	99	$im_a/2M^3$	
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3	M3	aa	$im_a/2M_a^3$	
D4	$\bar{\chi}\gamma^3\chi\bar{q}\gamma^3q$	m_q/M_*^2	M4	aa	$m_o/2M^3$	
DS	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	M5	00	$1/2M^2$	
D0 D7	$\chi \gamma^{\mu} \gamma^{\sigma} \chi q \gamma_{\mu} q$ $\bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\sigma} \gamma^{5} q$	$1/M_{*}$ $1/M^{2}$	M6	00	$1/2M^2$	
D8	$\chi \gamma^{\mu} \chi q \gamma^{\mu} \gamma q$ $\bar{\nu} \nu^{\mu} \nu^{5} \nu \bar{\sigma} \nu_{\mu} \nu^{5} \sigma$	$1/M_{*}^{*}$	M7		$\alpha_{\rm c}/8M^3$	
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{a}\sigma_{\mu\nu}a$	$1/M_{*}^{2}$	M8	CC CC	$i\alpha_s/8M^3$	
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_{*}^{2}	MO	cč	a (01/3	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	MIS	00 cč	$\alpha_s/\delta M_*$	
D12	$\bar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$i\alpha_s/4M_*^3$	MIU	66	$1\alpha_s/8M_*$	
D13	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$				
D14	$ar{\chi}\gamma^{5}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^3$	Com	plex scalar, 10	08.1783	
	Real scalar, 1008.1783		21	$\chi^{\dagger}\chi\bar{q}q$	m_q	$/M_*^2$ $/M^2$
R1	$\chi^2 \bar{q} q$	$m_a/2M_*^2$	3	x	1/	M^2
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$	24	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	1/	$/M_*^2$
R3	$\chi^2_{\sigma}G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/8M_*^2$	25	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	α_s	$/4M_{*}^{2}$
R4	$\chi^2 G_{\mu u} G^{\mu u}$	$i\alpha_s/8M_*^2$	26	$\chi^\dagger \chi G_{\mu u} \tilde{G}^{\mu u}$	$i\alpha_s$	/4 <i>M</i> _* ²
Teruki Kar	non	CMS Dark N	latter			8

а

8

Extensive MET + X Searches

Teruki Kamon

Monojet

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

- One energetic jet, pτ > 110 GeV, |η| < 2.4, and allow an additional jet (pτ > 30 GeV); MET > 250 GeV
- * Veto event if $j_3 p_T > 30$ GeV Veto event if $\Delta \phi(j_1, j_2) > 2.5$
- Veto event if they contain isolated electrons or muons with p_T > 10 GeV; or hadronic tau with > 20 GeV

Teruki Kamon

Monojet Event in CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

Monojet: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

 \bar{q}

q

0000000000

 $-\bar{\chi}$

χ

Monojet: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

MET > 400 GeV

Teruki Kamon

 \bar{q}

0000000000

 $\bar{\chi}$

χ

Monojet: Remarks

Limitation of EFT \rightarrow Simplified Model with M*

- EFT is valid when mediator mass (M*) > a fewTeV
- The couplings required are large comparing this with known couplings:
 - \circ strong interaction ~1.2
 - weak interaction ~0.6
- * Theory is non-perturbative if $\int g_q g_{DM} > 4\pi$
- Width larger than mass, so unlikely mediator will be identified as a particle

- Region I: EFT limit is good!
- Region II: EFT limit is too weak!
- Region III: EFT limit is too strong!

See, for example, arXiv:1308.6799 for further reading; **Matthew Buckley's** talk CMS Dark Matter

 \bar{q}

a

0000000000

Monophoton

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12047

- ✤ MET > 140 GeV
- * One energetic photon, p_T > 145 GeV, $|\eta|$ < 1.4442
- ♦ Veto on jets, leptons, and pixel seeds (hit pattern in the pixel detector) ∆\u00f3(photon,MET) > 2
- MinMET > 120 GeV, Prob(x²) (Reduce fake MET events)

Monophoton: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12047

Teruki Kamon

 \bar{q}

 $\bar{\chi}$

Monolepton ($\mathbf{W} \rightarrow \mathbf{I} \mathbf{v}$)

1Ì

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO13004

i & Dark Matter production with a W boson
 i & W recoiling against pair-produced DMs
 i & Vector- and axial-vector couplings considered
 i Interference effects parameterized by ξ

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\ell,
u})}$$

Monolepton: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO13004

Teruki Kamon

ù

d

u

Monotop ($t \rightarrow jjb$)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G12022

19

Monotop: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G12022

- Excellent agreement with data
- DM coupling set to 0.1 for q = u/d [arXiv:1106.6199]
- Exclude scalar (vector) DM masses below 327 (655) GeV

# of b tags	Zero CSVm b tag	One CSVm b tag
$t\overline{t}$	$6\pm0\pm5$	$12 \pm 0 \pm 12$
W+jets	$18\pm9\pm7$	$3\pm1\pm2$
Z+jets	$103 \pm 33 \pm 9$	$11\pm10\pm1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV	$5\pm0\pm0$	$0\pm0\pm0$
QCD	6	1
sum	$140{\pm}36$	$28{\pm}16$
Data	143	30

Teruki Kamon

Ui

000000

Ditop

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G13004

- Select pairs of top quarks in the di-lepton channels
 Exactly two identified leptons, and at least two jets are selected.
- * MET > 320 GeV
- $HT(j_1, j_2) < 400 \text{ GeV}, HT(l_1, l_2) > 120 \text{ GeV}, \Delta\phi(l_1, l_2) < 2$

Ditop: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G13004

Background Source	Yield
$t\bar{t}$	$0.87 \pm 0.18 \pm 0.27$
Single top	$0.48 \pm 0.46 \pm 0.09$
Di-boson	$0.32 \pm 0.09 \pm 0.05$
Drell-Yan	$0.19 \pm 0.14 \pm 0.03$
One Mis-ID lepton	$0.02 \pm 0.07 \pm 0.02$
Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$
Total Bkg	$1.89 \pm 0.53 \pm 0.39$
Data	1
Signal	$1.88 \pm 0.11 \pm 0.07$

M_{χ} (GeV)	Signal efficiency (%)	$\sigma_{ m exp}^{ m lim}$	$\sigma_{\rm obs}^{\rm lim}$
1	$1.28 \pm 0.09 \pm 0.04$	0.35	0.31
10	$1.45 \pm 0.10 \pm 0.05$	0.31	0.27
50	$1.65 \pm 0.11 \pm 0.05$	0.27	0.24
100	$1.96 \pm 0.12 \pm 0.06$	0.23	0.20
200	$2.31 \pm 0.12 \pm 0.05$	0.19	0.17
600	$3.45 \pm 0.17 \pm 0.09$	0.13	0.11
1000	$4.35 \pm 0.24 \pm 0.10$	0.10	0.09

Higgs portal to DM: VBF H(inv)

DM particles have the direct couplings to the SM Higgs sector, $H \rightarrow \chi \chi$

- Limits on branching fraction of Higgs to "invisible" particles used for limits on DM
- Can be scalar, vector or fermionic couplings
- * Limits only up to DM mass $M_X < M_H/2$
- ✓ Veto events with an identified electron, or muon with p_T > 10 GeV.
- VBF tag jet pair, p_{T,j1}, p_{T,j2} > 50 GeV, |η| < 4.7, η_{j1}, η_{j2} < 0, Δη_{jj} > 4.2, and M_{jj} > 1100 GeV
- ✤ MET > 130 GeV
- Central jet veto (event that has an additional jet with p_T > 30 GeV and pseudorapidity between those of the two tag jets)

Teruki Kamon

Higgs portal to DM: Z(II)+H(inv)

arXiv:1404.1344v2

- Two well-identified, isolated leptons of the same flavor and opposite signwith PT > 20 GeV, M(II) is within ±15 GeV of Z mass
- Veto event if there are two or more jets with P_T > 30 GeV
- Veto event containing a bottom-quark decay identified by either the presence of a soft-muon or by the CSV b-tagging algorithm
 - MET > 120 GeV

$$|E_{\rm T}^{\rm miss} - p_{\rm T}^{\ell\ell}| / p_{\rm T}^{\ell\ell} < 0.25$$

$$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > 2.7$$

Teruki Kamon

Higgs portal to DM: Z(bb)+H(inv)

arXiv:1404.1344v2

Teruki Kamon

Higgs portal to DM: Combined Results

arXiv:1404.1344v2

◆ 90% CL observed upper (expected) limit on B(H→inv) = 0.51(0.38)
◆ 95% CL observed upper (expected) limit on B(H→inv) = 0.58(0.44)

Upper limits on the spinindependent DM-nucleon cross section in Higgsportal models, derived for mH = 125GeV, and $B(H \rightarrow inv) < 0.51$ at 90% CL, as a function of the DM mass.

See, for example, arXiv:1405.3530 for further reading; Pyungwon Ko's talk

Teruki Kamon

Part II : Supersymmetry (SUSY)

Part II : Supersymmetry (SUSY)

CMS Dark Matter

Teruki Kamon

SUSY Wanted

- Gluinos
- 1st/2nd generation scalar quarks (squaks)
- ✤ 3rd generation squarks (stop, sbottom)
 - Stop could be light to give the 125-GeV Higgs mass a reasonable correction.
- Charginos (C1, C2), Neutralinos (N1,
 - N2, N3, N4), decaying into:
 - Leptons
 - Higgs
 - ΩZ
 - LSP?

**

- Lightest Neutralino (N1): Bino-like, Wino-like, Higgsino-like, Bino-Higgsinolike ..
- 🛛 Gravitino
- Sleptons
 - Selectrons and smuons are mass degenerate.
 - □ Special case: Stau is lighter.
- ✤ RPV

Teruki Kamon

Examples of SUSY Probe Metric

Outside a box ...

Closer Look at CMS SUSY Searches

Teruki Kamon

Light 3rd Generation Squarks

Teruki Kamon

Top Squark Search Challenge

- Small production cross section.
- t-tbar background is huge.

Top Squark Decay Modes

Stop decay \leftarrow Stop mixing & neutralino/chargino composition & $\Delta m = m_{\tilde{t}} - m_{\tilde{t}^0}$

LSP	Allowed st	top decays	Why
$ ilde{\chi}_1^0 = ilde{B}_3$	$ ilde{t}_L ightarrow t_L ilde{\chi}_1^0$	${ ilde t}_R o t_R { ilde \chi}_1^0$	U(1) couples L to L and R to R
$ ilde{\chi}_1^0 = ilde{W}_3$	$\tilde{t}_L \rightarrow$	$t_L ilde{\chi}_1^0$	SU(2) only acts on L
$ ilde{\chi}^0_1 = ilde{H}^0_d$	no	ne	Only couples to down-type
$ ilde{\chi}^0_1 = ilde{H}^{ ilde{0}}_u$	$ ilde{t}_L o t_R ilde{\chi}_1^0$	$ ilde{t}_R o t_L ilde{\chi}_1^0$	Higgs couple L to R (mass term)

Top Squark: Result (I)

Top Squark: Result (II)

Teruki Kamon

CMS Dark Matter

Teruki Kamon

CMS Preliminary

Teruki Kamon

Charginos/Neutralinos

Electroweak Production of Higgsinos

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13022

- Search for SUSY partner of the Higgs boson
- Each Higgsino decay into a Higgs boson and dark matter
- Each Higgs boson decays into 2 bottom quarks most often, so search for that

- \circ Lifetime of B meson is 1.5×10^{-12} seconds
- Silicon tracker detector precise enough to identify B's from "displaced" particles!

Teruki Kamon

≈ 5 mm

Higgsino Search Interpretation

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13022

- After all selection and background estimation, compare standard model prediction with observation in data
- Some small excess in data, but results consistent with background only expectation within uncertainties
- Interpret null search result as limits on Higgsino production
- The first search of its kind!

EWKino Summary

* Wino-Chargino and Bino-LSP

✓ Up to 640 and 300 GeV for light slepton case

- \checkmark Up to 340 and 100 GeV for W and Z cases
- Weaker limits for
 - ✓ heavy slepton
 - ✓ being Higgsinos
 - ✓ small mass difference (compressed spectra)

Personal Remark 1: VBF Topology

 [Question] How can we probe colorless SUSY sector if (i) heavy 1st/2nd generation squarks and gluino, and (ii) small △M (mass difference between NLSP and LSP)?

✤ [Answer]

- 1) Tagging energetic jets (+ MET) from cascade decays?
- 2) Tagging leptons?
- 3) Tagging VBF jets → WW Collider

 τ decay products η

- A. Datta, P. Konar, and B. Mukhopadhyaya, "Invisible Charginos and Neutralinos from Gauge Boson Fusion: A Way to Explore Anomaly Mediation", PRL 88 (2002) 181802.
- 2) G. Giudice, T. Han, K. Wang, and L.T. Wang, "Nearly Degenerate Gauginos and Dark Matter at the LHC", PRD 81 (2010) 115011
- B. Dutta, A. Gurrola, W. Johns, T. Kamon, P. Sheldon, K. Sinha, "Vector Boson Fusion Processes as a Probe of Supersymmetric Electroweak Sectors at the LHC", PRD 87 (2013) 035029
- 4) A.G. Delannoy, B. Dutta, A. Gurrola, W. Johns, T. Kamon, E. Luiggi, A. Melo, P. Sheldon, K. Sinha, K. Wang, S. Wu, "Probing Dark Matter at the LHC using Vector Boson Fusion Processes", PRL 111 (2013) 061801

N2 $\widetilde{\chi}_2^0$ Energitic $\widetilde{\chi}_1^0$ Very oft

Teruki Kamon

VBF as Tool for Compressed SUSY

VBF tagged jets (2 energetic jets with large $\Delta\eta$ separation: large M(jj)) in forward region, opposite hemispheres)

VBF production topology in transverse plane

Personal Remark 2: X-PAG DM Searches

R. Allahverdi and B. Dutta, PRD 88 (2013) 023525

B. Dutta, Y. Gao, and T. Kamon, PRD. 89 (2014), 096009 (2014)

- A minimal extension to SM with ~TeV scalar color triplet(s) (X₁ and X₂) and a 1-GeV fermionic DM candidate (n_{DM})
- * Baryon-number violating interaction mediated by heavy scalars (X)

 $\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{\rm DM} \mathbf{P}_R u_{\rho} + \text{C.C.}$

Summary: CMS probed a TeV scale

CMS will probe a few TeV scale

- No hints of DM particle (yet) in very diverse search programs
- LHC13/LHC33, ILC, FCC along with direct/indirect DM programs
- Upgraded detectors to maintain or improve triggers and physics object reconstruction
- Better understanding of BG

Teruki Kamon

"PPC"

Interconnection between Particle Physics and Cosmology

Texas A&M University, College Station, TX, USA May 14-18, 2007

Program Advisory	Committee		Organizing Co	mmittee
B. Alimach (Cambridge) V. Barger (Wisconsu) en V. A. Bedryakov (JINR, Dorra) D. Cime (CCLA) R. Colison (UCLA) W. de Boer (Karlinshe) B. Deira (TAMU) J. Ellin (CERN) S. Habib (LANE) J. Henret (NAC)	1 Hinchiffe (UC Berkeley) P. Jenn (CERN) T. Karnen (TAMI) G. Kane (Mchigan) D.I. Kazokev (JINR, Dubra) R. Kinhner (Harvard) T. Kalurgah (Coloro) M. Nojiri (KEK) F. Pinge (BNL) S. Perimter (LNL)	Al, Poskm (SLAC) A. Riess (Johns Hopkins) G. Ross (Octord) P. Shapiro (UT Assim) M. Shoght (Chicapa) GF. Simset (UC Bockey) D. Spergel (Practon) F. Sphane (ERN VAlerni) S.C.C. Tag (MIT) S. Wanniegi (UT Asstra)	R. Allahverå (UNM) B. Bissolleck (UNM) B. Dirn (TAMU) D. Fields (UNM) M. Göld (UNM) S. Hash (UNM) P. Henning (UNM)	T. Kamon (TA) D. Loomba (U) J. Mathews (U) E. Moncha (LA) S. Seidel (UNN) G. Taylor (UNN) *Char
U	niversity of New	Mexico, Albuquerq	ue, NM, USA	
Sponsors: Los Alamos Nat UNM (Department of Phys New Mexico Center for Par New Mexico Institute of M	tional Laboratory; ics and Astronomy, Institu rticle Physics); New Mexic lining and Technology	May 19-23, 2008 te for Astrophysics, co State University;	Credit and Copyr CERN Photo (CN NASA/ESA/STS NASA/ Chandra	ight [Left to Ri IS), sUHUDF, X-ray Center

PPC 2011 at CERN, June 14-18 PPC 2012 at KIAS, Korea, Nov. 5-9 PPC 2013 at CETUP*, SD, USA, July 8-13 PPC 2014 at Univ. de Guanajuato, Mexico, June 23-27 PPC 2015 at ???

Teruki Kamon

PPC Cube

Backup More CMS SUSY Searches

Teruki Kamon

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Summary plots for 8TeV dataset (click here) NEW

Journal Publications with 2012 8 TeV Data

Analysis	Approved Plots	<u>CDS</u> Entry	<u>Luminosity</u>	<u>Comment</u>
Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W,Z, and Higgs bosons in pp collisions at 8 TeV $$		CMS- SUS-13- 006	19.5/fb	Submitted to EPJC arXiv:1405.7570 NEW
Search for top-squark pair production with Higgs and Z bosons in the final state in pp collisions at 8 \mbox{TeV}	SUS13024	CMS- SUS-13- 024	19.5/fb	Submitted to PLB arXiv:1405.3886 NEW
Search for anomalous production of events with three or more leptons in pp collisions at 8 \mbox{TeV}	SUS13002	CMS- SUS-13- 002	19.5/fb	Submitted to PRD arXiv:1404.5801 NEW
Search for New Physics in Multijets and Missing Momentum Final State in pp collisions at 8 TeV	SUS13012	CMS- SUS-13- 012	19.5/fb	JHEP 06 (2014) 055 arXiv:1402.4770
Search for SUSY Partners of Top and Higgs Using Diphoton Higgs Decays in pp collisions at 8 \mbox{TeV}	<u>SUS13014</u>	CMS- SUS-13- 014	19.5/fb	Accepted by PRL arXiv:1312.3310
Search for new physics in events with same-sign dileptons and jets in pp collisions at 8 ${\rm TeV}$	<u>SUS13013</u>	CMS- SUS-13- 013	19.5/fb	JHEP 01 (2014) 163 arXiv:1311.6736
Search for supersymmetry using events with a single lepton, multiple jets, and b-tags	SUS13007	CMS- SUS-13- 007	19.3/fb	Submitted to PLB arXiv:1311.4937
Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV	SUS13011	<u>CMS-</u> SUS-13- 011	19.5/fb	EPJC 73 (2013) 2677 arXiv:1308.1586
Search for stop in R-parity-violating supersymmetry with three or more leptons and b- tags	SUS13003	CMS- SUS-13- 003	19.5/fb	PRL 111, 221801 (2013), arXiv:1306.6643
Search for supersymmetry using the shape of the HT and MET, and b-jet multiplicity distributions	SUS12024	CMS- SUS-12- 024	19.4/fb	PLB 725 243 (2013), arXiv:1305.2390
Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3, or = 4 b jets in 8 TeV pp collisions	SUS12028	CMS- SUS-12- 028	11.7/fb	EPJC 73 (2013) 2568, arXiv:1303.2985
Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at vs = 8 TeV $$	<u>SUS12017</u>	CMS- SUS-12- 017	10.5/fb	JHEP03 (2013) 037, JHEP07(2013)041, arXiv:1212.6194

Teruki Kamon

Recent Preliminary Results with 2012 8 TeV Data

Analysis Approved Plots CDS Entry Luminosity Comment

Phenomenological MSSM Interpretation of the 7 and 8 TeV results	SUS13020	PAS-SUS- 13-020	19.5/fb	NEW
Search for direct production of a pair of bottom squarks	SUS13018	PAS-SUS- 13-018	19.4/fb	NEW
Search for electroweak production of higgsinos in channels with two Higgs bosons decaying to b quarks in pp collisions at 8 TeV	SUS13022	PAS-SUS- 13-022	19.5/fb	NEW
Search for supersymmetry in hadronic final states using MT2 with the CMS detector at 8 TeV	<u>SUS13019</u>	PAS-SUS- 13-019	19.5/fb	NEW
Search for direct production of stops decaying to a charm and LSP using the monojet + MET final state	SUS13009	PAS-SUS- 13-009	19.7/fb	NEW
Search for top squarks in multijet events with large missing momentum in pp collisions at 8 TeV	<u>SUS13015</u>	PAS-SUS- 13-015	19.4/fb	NEW
A search for new physics in events with one lepton, high jet multiplicity and high b-tagged jet multiplicity in pp collisions at 8 TeV	SUS12015	PAS-SUS- 12-015	19.3/fb	
Search for Direct Top Squark Pair Production with Higgs bosons in the Final State in pp collisions at 8 TeV	<u>SUS13021</u>	PAS-SUS- 13-021	19.5/fb	
Search for SUSY in Opposite Sign Dilepton events, large number of jets, b-jets and MET in pp collisions at 8 TeV	<u>SUS13016</u>	PAS-SUS- 13-016	19.7/fb	
Search for electroweak production of charginos and neutralinos in final states with a Higgs boson in pp collisions at 8 TeV	<u>SUS13017</u>	PAS-SUS- 13-017	19.5/fb	
Search for SUSY using razor variables in events with b-jets in pp collisions at 8 TeV	<u>SUS13004</u>	PAS-SUS- 13-004	19.3/fb	
Search for supersymmetry in the 3 lepton + b-tag final state in pp collisions at 8 TeV	<u>SUS13008</u>	PAS-SUS- 13-008	19.5/fb	
Search for RPV SUSY in the 4-lepton final state in pp collisions at 8 TeV	<u>SUS13010</u>	PAS-SUS- 13-010	19.5/fb	
A Search for Anomalous Production of Events with three or more leptons using 9.2 fb-1 of vs = 8 TeV CMS Data	SUS12026	PAS-SUS- 12-026	9.2/fb	Updated with more data above
Search for RPV supersymmetry with three or more leptons and b-tags	SUS12027	PAS-SUS- 12-027	9.2/fb	
Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV	<u>SUS12022</u>	PAS-SUS- 12-022	9.2/fb	Updated with more data above
Search for Supersymmetry in Events with Photons and Missing Energy vs = 8 TeV	SUS12018	PAS-SUS- 12-018	4.04/fb	
Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at vs = 8 TeV $$	SUS12023	PAS-SUS- 12-023	9.7/fb	Updated with more data above
Search for supersymmetery in final states with missing transverse energy and 0, 1, 2, or = 3 b jets in Teruki Kamon ^{pp} collisions CMS Dark Matter	<u>SUS12016</u>	PAS-SUS- 12-016	3.9/fb	Updated with more data above

□ Sensitivity to a gluino mass of O(TeV) for m(LSP) ~ 100 GeV
 □ No hints of SUSY. This could still mean the gluino is heavy and stop may be light. → direct stop searches

Stop Semi-Leptonic: Interpretations

* Sensitivity at small ΔM : Selection variables independent of top reconstruction Specific BDT training for virtual top region to be sensitive up to LSP ~ 180 GeV

https://twiki.cern.ch/twiki/bin/view/CMS Public/PhysicsResultsSUS13015

- Pairs of top squarks decaying to a top quark and a stable, weakly interacting, massive particle using events containing multiple jets, with at least one identified as originating from a b-quark, and large missing transverse momentum.
- ✤ A novel top quark tagging algorithm for identifying a top quark candidate decaying hadronically.
- ✤ 19.4 fb⁻¹ at 8 TeV
- The production of top squarks with mass * less than 535 GeV is excluded at 95% confidence-level for small LSP masses less than 10 GeV.

CMS Preliminary, 19.4 fb⁻¹, is = 8 TeV upper limit on cross section (pb) 450 $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{\downarrow}^{0}$ NLO+NLL exclusion 10 \equiv Observed $\pm 1\sigma_{\text{theory}}$ 400 ي گ Expected ± 1 σ_{experiment} 350 300 250 10⁻¹ 200 150 10-2 100 U.

500

600

700

m_r (GeV)

50

200

300

400

(GeV)

95%

10⁻³

https://twiki.cern.ch/twiki/bin/view/CMS Public/PhysicsResultsSUS13021

- ✤ Direct heavier top squark (t̃₂) pair production followed by t̃₂ → H t̃₁, t̃₁ → tx̃⁰, using events with one or two electrons or muons and several jets, with at least 3 of them identified as originating from a b quark.
- ✤ 19.5 fb⁻¹ at $\sqrt{s} = 8$ TeV
- The interpretation concentrates on the region of signal mass parameter space M(t̃₁) M(χ^{˜0}) ~ M(t), which is not covered by existing searches. The analysis excludes at the 95% CL top squarks with masses M(t̃₂) up to about 450 GeV for M(t̃₁) up to about 250 GeV

Stop Re-Interpretations for Nonthermal DM

DM Production via VBF

A.G. Delannoy, B. Dutta, A. Gurrola, W. Johns, T. Kamon, E. Luiggi, A. Melo, P. Sheldon, K. Sinha, K. Wang, and S. Wu, "Probing Dark Matter at the LHC using Vector Boson Fusion Processes", arXiv:1304.7779 [hep-ph]

jj + MET + X

- The final state is same as invisible Higgs signal.
- ✤ But, Larger p_T jets
- Cross section?
 - ✓ Wino-like DM
 - ✓ Bino-Higgsino DM
- Feasibility?
 - ~50 GeV Wino-DM at 8 TeV
 - ~1000 GeV Wino-DM at 14 TeV
 - ✓ Bino-Higgsino DM at 14 TeV
- More?
 - Example, disappearing tracks?

 $\Delta M = M(\widetilde{\chi}_{1}^{\pm}) - M(\widetilde{\chi}_{1}^{0}) \sim 100 \, MeV$ $\Rightarrow Br(\widetilde{\chi}_{1}^{\pm} \to \widetilde{\chi}_{1}^{0} \pi^{\pm}) \sim 100\%$ $P_{T}(\pi^{\pm}) \sim \Delta M \sim 100 \, MeV$

Very Rich RPV MSSM Program

1209.0764 J.A. Evans Y. Kats

final state	collaboration	\mathcal{L} (fb ⁻¹)	ref.
pairs of dijets	ATLAS	0.034, 4.6	[41, 42]
pairs of dijets	\mathbf{CMS}	2.2	[43]
leptoquerk poirc	CMS	5.0	[44]
leptoquark pairs	\mathbf{CMS}	4.8	[45]
41	ATLAS	0.70	[46]
u	\mathbf{CMS}	2.0-2.3	[47, 48]
$t\overline{t} + ext{jet}$	CMS	5.0	[49]
$tar{t}+m_T$	ATLAS	1.04	[50]
leptonic m_{T2}	ATLAS	4.7	[51]
l ista - MET	CMS	4.7	[52]
ϵ + Jets + MET	ATLAS	4.7	[53, 54]
OR R + MET	CMS	4.98	[55]
$05 \ \ell\ell + \mathrm{MEL}$	ATLAS	1.04, 4.7	[56, 57]
SS $\ell\ell$ + MET	ATLAS	1.04, 2.05	[56, 58]
SS $\ell\ell$	ATLAS	1.6, 4.7	[59, 60]
SS $\ell\ell$ (+ MET)	CMS	4.98	[61, 62]
SS $\ell\ell + b$ (+ MET)	CMS	4.98	[63]
$b' \;(ext{SS}\;\ell\ell \; ext{or}\; 3\ell + b)$	CMS	4.9	[64]
$b' \ (ext{SS} \ \ell\ell)$	ATLAS	4.7	[65]
$3 \text{ or } 4 \ell$	ATLAS	1.02	[66, 67]
$3 \ \ell + \mathrm{MET}$	ATLAS	2.06, 4.7	[68, 69]
$4 \ell + MET$	ATLAS	2.06	[70]
3 or 4 ℓ (+ MET)	CMS	4.98	[7]
1 or 2 τ + jets + MET	ATLAS	2.05, 4.7	[71 - 73]
- L & Lista L MET	ATLAS	4.7	[73]
$i \pm i \pm \text{Jers} \pm \text{IMPT}$	CMS	5.0	[55]
b Liota L MET	ATLAS	2.05, 4.7	[74, 75]
0 + Jets + MET	CMS	1.1, 4.98	[76, 77]
h + l + iota + MET	ATLAS	2.05	[74]
$0 \pm i \pm \text{Jets} \pm \text{MIET}$	CMS	4.96 - 4.98	[78, 79]
$Z \perp iote \perp MET$	CMS	4.98	[80]
Z + Jets + MET	ATLAS	2.05	[81]
iote + MET	ATLAS	4.7	[82, 83]
Jers – MIRT	CMS	1.1, 4.98	[84, 85]
(b)-jets with α_T	\mathbf{CMS}	1.14, 4.98	[86, 87]

Final state	b-jets	Scenario(s)
$(au^+ j)(au^- j)$	0	LQD332
(jj)(jj)	0, 2	UDD312/323
8j	4, 6	UDD312/323 with \tilde{H} decaying via \tilde{t} ; UDD213 with $\tilde{H}^{\pm} \to \tilde{H}^0$
$\ell^+\ell^- + 6j$	2, 4, 6	LQD232/233 with \tilde{H}/\tilde{W} (unless decays via \tilde{b}_L or \tilde{b}_R) LQD221/123 with \tilde{W}
$ au^+ au^- + 6j$	2, 4, 6	LQD332/333 with \tilde{H}/\tilde{W} (unless decays via \tilde{b}_L or \tilde{b}_R) LQD321/323 with $\tilde{H}-\tilde{\nu}_{\tau}/\tilde{\tau}_L$ or \tilde{W} (with or without $\tilde{\chi}^{\pm} \to \tilde{\chi}^0$)
$\tau^{\pm}\tau^{\pm} + 6j$	2, 4	LQD321/323 with \tilde{H} - $\tilde{\nu}_{\tau}/\tilde{\tau}_L$ or \tilde{W} , with $\tilde{\chi}^{\pm} \to \tilde{\chi}^0$
$t\overline{t} + 6j$	2, 4	UDD212/213 with \tilde{g}/\tilde{B} ; UDD213 with \tilde{H}
		LQD321/323 with \tilde{g}/\tilde{B}
$t\bar{t} + t\bar{z} + MET$	916	LQD323/233/333 with \tilde{H} decaying via \tilde{b}_R
u + 4j + MET	2, 4, 0	LQD232/233/332/333 with \tilde{H}/\tilde{W} decaying via \tilde{b}_L
		LQD232/233/332/333 with \tilde{B} (unless decays via \tilde{t})
$(tt \text{ or } t\overline{t}) + 6j$	4, 6	UDD312/323 with $ ilde{H}^{\pm} ightarrow ilde{H}^0$
$t\overline{t} + 2\tau + 4j$ $t\overline{t} + \tau + 4j + \text{MET}$	2, 4	LQD321/323 with \tilde{g}/\tilde{B} ; LQD323 with $\tilde{H} ilde{b}_R$
$\frac{\tau^+ \tau^- W^+ W^- \pm 2i}{\tau^+ \tau^- W^+ W^- \pm 2i}$		
$ au + W^+W^- + 2j + \text{MET}$ $W^+W^- + 2j + \text{MET}$	0	LQD323 with \tilde{b}_R
4 tops + 4j	4,6	UDD312/323 with \tilde{B}
		LQD221/123/321/323 with \tilde{W}
		LQD321/323 with $ ilde{W}^{\pm} ightarrow ilde{W}^0$
6j + MET	2, 4	LQD232/332 with $\tilde{W}^{\pm} \to \tilde{W}^0$ (unless decays via \tilde{t})
		LQD323 with $ ilde{H}^{\pm} ightarrow ilde{H}^0 ightarrow ilde{b}_R$
$\ell + 6j + \text{MET}$	2, 4	LQD221/123 with \tilde{W}
$ au + 6j + \mathrm{MET}$	2, 4	LQD321/323 with \tilde{W} (with or without $\tilde{W}^{\pm} \to \tilde{W}^0$)
	0	LQD323 with $H^{\pm} \rightarrow H^{\circ} \rightarrow b_R$
$\tau \cdot \tau + 2b + \text{MET}$	2	LLE123/233 with heavy W
$W^{+}W^{-} + 4j$	0	UDD213 with b_R

Table 6: Dominant final states in scenarios for which the coverage is insufficient (for $m_{\rm stop} \lesssim 500$ GeV). See tables 1–4 for more detailed descriptions of the scenarios mentioned. The chargino is assumed to decay directly via a sfermion and its RPV coupling (rather than transition to a neutralino first), except where explicitly noted otherwise. As before, couplings related by interchanging electrons and muons, or first and second generation quarks, are listed just once. The second column indicates the possible number of *b*-jets in each scenario (including those coming from top decays, where relevant).

Table 5: 7 TeV LHC searches used for inferring limits.

Monojet: Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

Teruki Kamon

 \bar{q}

q

6000000000

 $\bar{\chi}$

χ

62

Backup minNET, BDT

Teruki Kamon

minMET in Monophoton

MHT Minimization

A way to identify and reduce the fake met contribution, where you minimize the unclustered energy in the event by trying to re-distribute the energy back into the visible objects.

$$\begin{split} \mathbf{E}_{x,y}^{\uparrow} &= \mathbf{E}_{x,y}^{reco} + \sum_{i=objects} (p_{x,y}^{reco})_i - (p_{x,y}^{\uparrow})_i \\ \mathbf{E}_T^{-2} &= \mathbf{E}_x^2 + \mathbf{E}_y^2 \\ \mathbf{E}_T^{-2} &= \mathbf{E}_x^2 + \mathbf{E}_y^2 \\ \chi^2 &= \sum_{i=objects} \left(\frac{(p_T^{reco})_i - (\hat{p}_T)_i}{(\sigma_{p_T})_i} \right)^2 + \left(\frac{\mathbf{E}_x}{\sigma_{\mathbf{E}_x}} \right)^2 + \left(\frac{\mathbf{E}_y}{\sigma_{\mathbf{E}_y}} \right)^2. \end{split}$$

If the Met is intrinsic, balancing the object momenta wouldn't be easy and will result in high χ^2 .

The variables that give good discrimination are the $Prob(\chi^2)$ and the recalculated minimized Met.

Teruki Kamon

BDT Parameters in Z(bb)+H(inv)

Table 6: Input variables to the $Z(b\overline{b})H(inv)$ BDT.

Variable	
$p_{\rm T}^{\rm j1}, p_{\rm T}^{\rm j2}$	Transverse momentum of each Z boson daughter
M_{ij}	Dijet invariant mass
$p_{\mathrm{T}}^{\mathrm{jj}}$	Dijet transverse momentum
$E_{\rm T}^{\rm miss}$	Missing transverse energy
$\hat{N_{aj}}$	Number of additional jets ($p_T > 25 \text{ GeV}$ and $ \eta < 4.5$)
CSV _{max}	Value of CSV for the Z boson daughter with largest CSV value
CSV _{min}	Value of CSV for the Z boson daughter with second largest CSV value
$\Delta \phi(Z,H)$	Azimuthal angle between $E_{\rm T}^{\rm miss}$ and dijet
$\Delta \eta_{ii}$	Difference in η between Z daughters
ΔR_{ii}	Distance in η - ϕ between Z daughters
$\Delta \theta_{\text{pull}}$	Color pull angle [62]
$\Delta \hat{\phi}(E_{\rm T}^{\rm miss}, j)$	Azimuthal angle between $E_{\rm T}^{\rm miss}$ and the closest jet
CSV _{aj}	Maximum CSV of the additional jets in an event
$\Delta R(H,aj)$	Minimum distance between an additional jet and the Z boson candidate
m_{T}	Transverse mass of the ZH system