iravity: Newtonian, post-Newtonian Relativistic

X Mexican School on Gravitation \& Mathematical Physics
Playa del Carmen, 1 - 5 December, 2014

Clifford Will

Distinguished Professor of Physics University of Florida
Chercheur Associé
Institut d'Astrophysique de Paris
http://phys.ufl.edu/~cmw/ cmw@physics.ufl.edu

Outline of the Lectures*

Part 1: Newtonian Gravity

- Foundations
- Equations of hydrodynamics
- Spherical and nearly spherical bodies
- Motion of extended fluid bodies

Part 2: Newtonian Celestial Mechanics

- Two-body Kepler problem
- Perturbed Kepler problem
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Gravity

Newtonian, Post-Newtonian, Relativistic

Eric Poisson and Clifford M. Will

CAMBRIDGE
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Foundations of Newtonian Gravity

Newton's 2 nd law and the law of gravitation:

$$
\begin{aligned}
m_{I} \boldsymbol{a} & =\boldsymbol{F} \\
\boldsymbol{F} & =-G m_{G} M \boldsymbol{r} / r^{3}
\end{aligned}
$$

The principle of equivalence:

$$
\begin{aligned}
\boldsymbol{a} & =-\frac{m_{G}}{m_{I}} \frac{G M \boldsymbol{r}}{r^{3}} \\
\text { If } m_{G} & =m_{I}(1+\eta)
\end{aligned}
$$

Then, comparing the acceleration of two different bodies or materials

$$
\Delta \boldsymbol{a}=\boldsymbol{a}_{1}-\boldsymbol{a}_{2}=-\left(\eta_{1}-\eta_{2}\right) \frac{G M \boldsymbol{r}}{r^{3}}
$$

The Weak Equivalence Principle (WEP)

400 CE Ioannes Philiponus: "...let fall from the same heic
two weights of which one is many times as heavy as the other the difference in time is a very small one"
1553 Giambattista Benedetti
proposed equality
1586 Simon Stevin experiments
1589-92 Galileo Galilei
Leaning Tower of Pisa?
1670-87 Newton
pendulum experiments
1889, 1908 Baron R. von Eötvös
torsion balance experiments (10-9)
1990-2010 UW (Eöt-Wash)
10-13
2010 Atom inteferometers
matter waves vs macroscopic object

Bodies fall in a gravitational field with an acceleration that is independent of mass, composition or internal structure

Tests of the Weak Equivalence Principle

Newtonian equations of Hydrodynamics

Writing $\quad m \boldsymbol{a}=m \boldsymbol{\nabla} U$, Equation of motion

$$
U=G M / r, \text { Field equation }
$$

Generalize to multiple sources (sum over M's) and continuous matt

$$
\begin{array}{|rlrl}
\begin{array}{rlrl}
\rho \frac{d v}{d t} & =\rho \boldsymbol{\nabla} U-\nabla p, & & \text { Euler equation of motion } \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v}) & =0, & & \text { Continuity equation } \\
\nabla^{2} U & =-4 \pi G \rho, & & \text { Poisson field equation } \\
\frac{d}{d t}:=\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla}, & \text { Total or Lagrangian derivative } \\
p=p(\rho, T, \ldots) & & \text { Equation of state }
\end{array} \\
\hline
\end{array}
$$

Formal solution of Poisson's field equation:
Write $\quad U(t, \boldsymbol{x})=G \int G\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \rho\left(t, \boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}$,
Green function $\nabla^{2} G\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=-4 \pi \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \Rightarrow G\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=1 /\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|$

$$
U(t, \boldsymbol{x})=G \int \frac{\rho\left(t, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Rules of the road

Consequences of the continuity equation: for any $f(x, t)$:

$$
\begin{aligned}
\frac{d}{d t} \int \rho(t, \boldsymbol{x}) f(t, \boldsymbol{x}) d^{3} x & =\int\left(\rho \frac{\partial f}{\partial t}+f \frac{\partial \rho}{\partial t}\right) d^{3} x \\
& =\int\left(\rho \frac{\partial f}{\partial t}-f \boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})\right) d^{3} x \\
& =\int\left(\rho \frac{\partial f}{\partial t}+\rho \boldsymbol{v} \cdot \boldsymbol{\nabla} f\right) d^{3} x-\oint f \rho \boldsymbol{v} \cdot d \boldsymbol{S} \\
& =\int \rho \frac{d f}{d t} d^{3} x .
\end{aligned}
$$

Useful rules:

$$
\begin{aligned}
\frac{\partial}{\partial t} \int \rho\left(t, \boldsymbol{x}^{\prime}\right) f\left(t, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right) d^{3} x^{\prime} & =\int \rho^{\prime}\left(\frac{\partial f}{\partial t}+\boldsymbol{v}^{\prime} \cdot \nabla^{\prime} f\right) d^{3} x^{\prime}, \\
\frac{d}{d t} \int \rho\left(t, \boldsymbol{x}^{\prime}\right) f\left(t, \boldsymbol{x}, \boldsymbol{x}^{\prime}\right) d^{3} x^{\prime} & =\int \rho^{\prime}\left(\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \nabla f+\boldsymbol{v}^{\prime} \cdot \nabla^{\prime} f\right) d^{3} x^{\prime} \\
& =\int \rho^{\prime} \frac{d f}{d t} d^{3} x^{\prime}
\end{aligned}
$$

Global conservation laws

$$
\begin{aligned}
M & :=\int \rho(t, \boldsymbol{x}) d^{3} x=\mathrm{constant} \\
\boldsymbol{P} & :=\int \rho(t, \boldsymbol{x}) \boldsymbol{v} d^{3} x=\mathrm{constant} \\
E & :=\mathcal{T}(t)+\Omega(t)+E_{\mathrm{int}}(t)=\mathrm{constant} \\
\boldsymbol{J} & :=\int \rho \boldsymbol{x} \times \boldsymbol{v} d^{3} x=\mathrm{constant} \\
\boldsymbol{R}(t) & :=\frac{1}{M} \int \rho(t, \boldsymbol{x}) \boldsymbol{x} d^{3} x=\frac{\boldsymbol{P}}{M}\left(t-t_{0}\right)+\boldsymbol{R}_{0}
\end{aligned}
$$

$$
\begin{array}{r}
d(\epsilon \mathcal{V})+p d \mathcal{V}=0 \\
\nabla \cdot \boldsymbol{v}=\mathcal{V}^{-1} d \mathcal{V} / d t
\end{array}
$$

$$
\begin{aligned}
& \mathcal{T}(t):=\frac{1}{2} \int \rho v^{2} d^{3} x \\
& \Omega(t):=-\frac{1}{2} G \int \frac{\rho \rho^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} d^{3} x,
\end{aligned}
$$

$$
E_{\text {int }}(t):=\int \epsilon d^{3} x
$$

$$
\begin{aligned}
\frac{d}{d t} \int \rho \boldsymbol{v} d^{3} x & =\int(\rho \boldsymbol{\nabla} U-\nabla p) d^{3} x \\
& =-G \iint \rho \rho^{\prime} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} d^{3} x d^{3} x^{\prime}-\oint p \boldsymbol{n} d^{2} S \\
& =0
\end{aligned}
$$

Spherical and nearly spherical bodies

Spherical symmetry

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial U}{\partial r}\right)=-4 \pi G \rho(t, r) \\
& \frac{\partial U}{\partial r}=-\frac{G m(t, r)}{r^{2}} \quad m(t, r):=\int_{0}^{r} 4 \pi \rho\left(t, r^{\prime}\right) r^{\prime 2} d r^{\prime}
\end{aligned}
$$

$$
U(t, r)=\frac{G m(t, r)}{r}+4 \pi G \int_{r}^{R} \rho\left(t, r^{\prime}\right) r^{\prime} d r^{\prime}
$$

Outside the body $U=G M / r$

Spherical and nearly spherical bodies

Non-spherical bodies: the external field $\left|\boldsymbol{x}^{\prime}\right|<|\boldsymbol{x}|$
Taylor expansion:

$$
\begin{aligned}
\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} & =\frac{1}{r}-x^{\prime j} \partial_{j}\left(\frac{1}{r}\right)+\frac{1}{2} x^{\prime j} x^{\prime k} \partial_{j} \partial_{k}\left(\frac{1}{r}\right)-\cdots \\
& =\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} x^{\prime L} \partial_{L}\left(\frac{1}{r}\right)
\end{aligned}
$$

Then the Newtonian potential outside the body becomes

$$
\begin{gathered}
U_{\mathrm{ext}}(t, \boldsymbol{x})=G \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} I^{\langle L\rangle} \partial_{\langle L\rangle}\left(\frac{1}{r}\right), \\
I^{\langle L\rangle}(t):=\int \rho\left(t, \boldsymbol{x}^{\prime}\right) x^{\prime\langle L\rangle} d^{3} x^{\prime} \\
x^{L}:=x^{i} x^{j} \ldots(\text { L times }) \\
\partial_{L}:=\partial_{i} \partial_{j} \ldots \text { (L times) } \\
\langle\ldots\rangle:=\text { symmetric tracefree product }
\end{gathered}
$$

Symmetric tracefree (STF) tensors

 $A^{\langle i j k \cdots}$ Symmetric on all indices, and $\delta_{i j} A^{\langle i j k \ldots\rangle}=0$Example: gradients of $1 / r$

$$
\begin{aligned}
\partial_{j} r^{-1} & =-n_{j} r^{-2}, \\
\partial_{j k} r^{-1} & =\left(3 n_{j} n_{k}-\delta_{j k}\right) r^{-3}, \\
\partial_{j k n} r^{-1} & =-\left[15 n_{j} n_{k} n_{n}-3\left(n_{j} \delta_{k n}+n_{k} \delta_{j n}+n_{n} \delta_{j k}\right)\right] r^{-4} \\
\partial_{L} r^{-1} & =\partial_{\langle L\rangle} r^{-1}=(-1)^{\ell}(2 \ell-1)!!\frac{n_{\langle L\rangle}}{r^{\ell+1}}
\end{aligned}
$$

General formula for $n<l>$:

$$
\begin{array}{r}
n^{\langle L\rangle}=\sum_{p=0}^{[\ell / 2]}(-1)^{p} \frac{(2 \ell-2 p-1)!!}{(2 \ell-1)!!}\left[\delta^{2 P} n^{L-2 P}+\operatorname{sym}(q)\right] \\
q:=\ell!/[(\ell-2 p)!(2 p)!!]
\end{array}
$$

Symmetric tracefree (STF) tensors

Link between $\mathrm{n}<$ L> and spherical harmonics

$$
\begin{aligned}
& e_{\langle L\rangle}{ }^{\langle L\rangle}=\frac{\ell!}{(2 \ell-1)!!} P_{\ell}(\boldsymbol{e} \cdot \boldsymbol{n}) \\
& n^{\langle L\rangle}:=\frac{4 \pi \ell!}{(2 \ell+1)!!} \sum_{m=-\ell}^{\ell} \mathcal{Y}_{\ell m}^{\langle L\rangle} Y_{\ell m}(\theta, \phi) \\
& \begin{array}{l}
\mathcal{Y}_{10}^{\langle z\rangle}=\sqrt{\frac{3}{4 \pi}}, \quad \mathcal{Y}_{11}^{\langle x\rangle}=-\sqrt{\frac{3}{8 \pi}}, \quad \mathcal{Y}_{11}^{\langle y\rangle}=i \sqrt{\frac{3}{8 \pi}}, \\
\mathcal{Y}_{20}^{\langle x x\rangle}=-\sqrt{\frac{5}{16 \pi}}, \quad \mathcal{Y}_{20}^{\langle y y\rangle}=-\sqrt{\frac{5}{16 \pi}}, \quad \mathcal{Y}_{20}^{\langle z\rangle}=2 \sqrt{\frac{5}{16 \pi}},
\end{array}
\end{aligned}
$$

Average of $\mathrm{n}<$ <> over a sphere:
$\left\langle\left\langle n^{L}\right\rangle\right\rangle:=\frac{1}{4 \pi} \oint n^{L} d \Omega= \begin{cases}\frac{1}{(2 \ell+1)!!}\left(\delta^{L / 2}+\operatorname{sym}[(\ell-1)!!]\right) & \ell=\text { even } \\ 0 & \ell=\text { odd }\end{cases}$

Spherical and nearly spherical bodies

Example: axially symmetric body

$$
\begin{aligned}
& I_{A}^{\langle L\rangle}=-m_{A} R_{A}^{\ell}\left(J_{\ell}\right)_{A} e^{\langle L\rangle} \\
& J_{\ell}:=-\sqrt{\frac{4 \pi}{2 \ell+1}} \frac{1}{M R^{\ell}} \int \rho(t, \boldsymbol{x}) r^{\ell} Y_{\ell 0}^{*}(\theta, \phi) d^{3} x
\end{aligned}
$$

$$
U_{\mathrm{ext}}(t, \boldsymbol{x})=\frac{G M}{r}\left[1-\sum_{\ell=2}^{\infty} J_{\ell}\left(\frac{R}{r}\right)^{\ell} P_{\ell}(\cos \theta)\right]
$$

Note that:

$$
J_{2}=\frac{C-A}{M R^{2}}
$$

Motion of extended fluid bodies

Main assumptions:

- Bodies small compared to typical separation ($R \ll r$)
- "isolated" -- no mass flow

- adiabatic response to tidal deformations -- nearly spherical

External problem:

- determine motions of bodies as functions (or functionals) of internal parameters Internal problem:
- given motions, determine evolution of internal parameters Solve the two problems self-consistently or iteratively

Example: Earth-Moon system -- orbital motion raises tides, tidally deformed fields affect motions

Motion of extended fluid bodies

Basic definitions

$$
\begin{aligned}
m_{A} & :=\int_{A} \rho(t, \boldsymbol{x}) d^{3} x \\
\boldsymbol{r}_{A}(t) & :=\frac{1}{m_{A}} \int_{A} \rho(t, \boldsymbol{x}) \boldsymbol{x} d^{3} x
\end{aligned}
$$

$$
\begin{gathered}
d m_{A} / d t=0 \\
\boldsymbol{v}_{A}(t):=\frac{d \boldsymbol{r}_{A}}{d t}=\frac{1}{m_{A}} \int_{A} \rho \boldsymbol{v} d^{3} x \\
\boldsymbol{a}_{A}(t):=\frac{d \boldsymbol{v}_{A}}{d t}=\frac{1}{m_{A}} \int_{A} \rho \frac{d \boldsymbol{v}}{d t} d^{3} x
\end{gathered}
$$

Is the center of mass unique?

- pure convenience, should not wander outside the body
- not physically measurable
- almost impossible to define in GR

$$
\begin{aligned}
m_{A} \boldsymbol{a}_{A}= & -G \int_{A} \int_{A} \rho \rho^{\prime} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\boldsymbol{x}-\left.\boldsymbol{x}^{\prime}\right|^{3}} d^{3} x d^{3} x^{\prime} \\
& -G \int_{A} \rho\left[\sum_{B \neq A} \int_{B} \rho^{\prime} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} d^{3} x^{\prime}\right] d^{3} x
\end{aligned}
$$

Define:

$$
\begin{aligned}
\boldsymbol{x} & :=\boldsymbol{r}_{A}(t)+\overline{\boldsymbol{x}} \\
\boldsymbol{x}^{\prime} & :=\boldsymbol{r}_{B}(t)+\overline{\boldsymbol{x}}^{\prime} \\
\boldsymbol{r}_{A B} & :=\boldsymbol{r}_{A}-\boldsymbol{r}_{B}
\end{aligned}
$$

Motion of extended fluid bodies

N-body point mass terms

$$
\begin{aligned}
a_{A}^{j}= & G \sum_{B \neq A}\left\{-\frac{m_{B}}{r_{A B}^{2}} n_{A B}^{j}\right. \\
& +\sum_{\ell=2}^{\infty} \frac{1}{\ell!}\left[(-1)^{\ell} I_{B}^{\langle L\rangle}+\frac{m_{B}}{m_{A}} I_{A}^{\langle L\rangle}\right] \partial_{j L}^{A}\left(\frac{1}{r_{A B}}\right) \quad \begin{array}{c}
\text { other bodies } \\
\text { own moments }
\end{array} \\
& \left.+\frac{1}{m_{A}} \sum_{\ell=2}^{\infty} \sum_{\ell^{\prime}=2}^{\infty} \frac{(-1)^{\ell^{\prime}}}{\ell!\ell^{\prime}!} I_{A}^{\langle L\rangle} I_{B}^{\left\langle L^{\prime}\right\rangle} \partial_{j L L^{\prime}}^{A}\left(\frac{1}{r_{A B}}\right)\right\}
\end{aligned}
$$

Two-body system with only body 2 having non-zero ${ }^{\text {<L> }}$

$$
\begin{aligned}
\boldsymbol{r} & :=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, \quad r:=|\boldsymbol{r}| \\
\boldsymbol{R} & :=\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) / m \\
m & :=m_{1}+m_{2} \\
\mu & :=m_{1} m_{2} / m
\end{aligned}
$$

$$
a^{j}=-\frac{G m}{r^{2}} n^{j}+G m \sum_{\ell=2}^{\infty} \frac{(-1)^{\ell}}{\ell!} \frac{I_{2}^{\langle L\rangle}}{m_{2}} \partial_{j L}\left(\frac{1}{r}\right)
$$

Outline of the Lectures*

Part 1: Newtonian Gravity

- Foundations
- Equations of hydrodynamics
- Spherical and nearly spherical bodies
- Motion of extended fluid bodies

Part 2: Newtonian Celestial Mechanics

- Two-body Kepler problem
- Perturbed Kepler problem
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Motion of extended fluid bodies

N-body point mass terms

$$
\begin{aligned}
a_{A}^{j}= & G \sum_{B \neq A}\left\{-\frac{m_{B}}{r_{A B}^{2}} n_{A B}^{j}\right. \\
& +\sum_{\ell=2}^{\infty} \frac{1}{\ell!}\left[(-1)^{\ell} I_{B}^{\langle L\rangle}+\frac{m_{B}}{m_{A}} I_{A}^{\langle L\rangle}\right] \partial_{j L}^{A}\left(\frac{1}{r_{A B}}\right) \quad \begin{array}{c}
\text { other bodies } \\
\text { own moments }
\end{array} \\
& \left.+\frac{1}{m_{A}} \sum_{\ell=2}^{\infty} \sum_{\ell^{\prime}=2}^{\infty} \frac{(-1)^{\ell^{\prime}}}{\ell!\ell^{\prime}!} I_{A}^{\langle L\rangle} I_{B}^{\left\langle L^{\prime}\right\rangle} \partial_{j L L^{\prime}}^{A}\left(\frac{1}{r_{A B}}\right)\right\}
\end{aligned}
$$

Two-body system with only body 2 having non-zero ${ }^{\text {<L> }}$

$$
\begin{aligned}
\boldsymbol{r} & :=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, \quad r:=|\boldsymbol{r}| \\
\boldsymbol{R} & :=\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) / m \\
m & :=m_{1}+m_{2} \\
\mu & :=m_{1} m_{2} / m
\end{aligned}
$$

$$
a^{j}=-\frac{G m}{r^{2}} n^{j}+G m \sum_{\ell=2}^{\infty} \frac{(-1)^{\ell}}{\ell!} \frac{I_{2}^{\langle L\rangle}}{m_{2}} \partial_{j L}\left(\frac{1}{r}\right)
$$

The two-body Kepler problem

- set center of mass at the origin $(X=0)$
- ignore all multipole moments (spherical bodies or point masses)
- define $\boldsymbol{r}:=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, r:=|\boldsymbol{r}|, m:=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$
- reduces to effective one-body problem

$$
\boldsymbol{a}=-\frac{G m}{r^{2}} \boldsymbol{n}
$$

Energy and angular momentum conserved:

$$
\begin{aligned}
E & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-G \frac{m_{1} m_{2}}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \\
& =\frac{1}{2} \mu v^{2}-G \frac{\mu m}{r} \\
L & =m_{1} \boldsymbol{r}_{1} \times \boldsymbol{v}_{1}+m_{2} \boldsymbol{r}_{2} \times \boldsymbol{v}_{2}
\end{aligned}
$$

$$
=\mu \boldsymbol{r} \times \boldsymbol{v}
$$

orbital plane is fixed

Effective one-body problem

Make orbital plane the $x-y$ plane

$$
\begin{aligned}
\boldsymbol{r} \times \boldsymbol{v} & =r^{2} \frac{d \phi}{d t}:=h \boldsymbol{e}_{z} \\
\boldsymbol{v} & =\frac{d \boldsymbol{r}}{d t}=\dot{r} \boldsymbol{n}+r \dot{\phi} \boldsymbol{\lambda}
\end{aligned}
$$

From energy conservation:

$$
\begin{aligned}
\dot{r}^{2} & =2\left[\varepsilon-V_{\mathrm{eff}}(r)\right] \\
V_{\mathrm{eff}}(r) & =\frac{h^{2}}{r^{2}}-\frac{G m}{r}
\end{aligned}
$$

Reduce to quadratures (integrals)

$$
\begin{aligned}
t-t_{i} & = \pm \int_{r_{i}}^{r} \frac{d r^{\prime}}{\sqrt{2\left[\varepsilon-V_{\mathrm{eff}}\left(r^{\prime}\right)\right]}} \\
\phi-\phi_{i} & =h \int_{t_{i}}^{t} \frac{d t^{\prime}}{r\left(t^{\prime}\right)^{2}}
\end{aligned}
$$

Keplerian orbit solutions

Radial acceleration, or d/dt of energy equation:

$$
\ddot{r}-\frac{h^{2}}{r^{3}}=-\frac{G m}{r^{2}}
$$

Find the orbit in space: convert from t to ϕ :

$$
\begin{aligned}
& d / d t=\dot{\phi} d / d \phi=\left(h / r^{2}\right) d / d \phi \\
& \frac{d^{2}}{d \phi^{2}}\left(\frac{1}{r}\right)+\frac{1}{r}=\frac{G m}{h^{2}}
\end{aligned}
$$

$$
\frac{1}{r}=\frac{1}{p}(1+e \cos f)
$$

$f:=\phi-\omega$ true anomaly
$p:=h^{2} / G m$ semilatus rectum

Elliptical orbits (e<1, a>0)

$$
\begin{aligned}
& r_{\text {peri }}=\frac{p}{1+e}, \\
& r_{\text {apo }}=\frac{p}{1-e}, \\
& a=\frac{1}{2}\left(r_{\text {peri }}+r_{\text {apo }}\right)=\omega+\pi \\
& 1-e^{2}
\end{aligned}
$$

$$
\phi_{\text {in }}-\phi_{\text {out }}=\pi-2 \arcsin (1 / e)
$$

Keplerian orbit solutions

Useful relationships

$$
\begin{aligned}
\dot{r} & =\frac{h e}{p} \sin f \\
v^{2} & =\frac{G m}{p}\left(1+2 e \cos f+e^{2}\right)=G m\left(\frac{2}{r}-\frac{1}{a}\right) \\
E & =-\frac{G \mu m}{2 a} \\
e^{2} & =1+\frac{2 h^{2} E}{\mu(G m)^{2}} \\
P & =2 \pi\left(\frac{a^{3}}{G m}\right)^{1 / 2} \quad \text { for closed orbits }
\end{aligned}
$$

Alternative solution

$$
r=a(1-e \cos u)
$$

$$
n(t-T)=u-e \sin u
$$

$$
\begin{aligned}
\tan \frac{f}{2} & =\sqrt{\frac{1+e}{1-e}} \tan \frac{u}{2} \\
n & =2 \pi / P
\end{aligned}
$$

$u=$ eccentric anomaly
$\mathrm{f}=$ true anomaly
$\mathrm{n}=$ mean motion

Dynamical symmetry in the Kepler problem

- a and e are constant (related to E and h)
- orbital plane is constant (related to direction of h)
- ω is constant -- a hidden, dynamical symmetry

$$
\begin{aligned}
& \text { Runge-Lenz vector } \\
& \begin{aligned}
\boldsymbol{A} & :=\frac{\boldsymbol{v} \times \boldsymbol{h}}{G m}-\boldsymbol{n} \\
& =e\left(\cos \omega \boldsymbol{e}_{x}+\sin \omega \boldsymbol{e}_{y}\right) \\
& =\text { constant }
\end{aligned}
\end{aligned}
$$

Comments:

- responsible for the degeneracy of hydrogen energy levels
- added symmetry occurs only for $1 / r$ and r^{2} potentials
- deviation from $1 / r$ potential generically causes $\mathrm{d} \omega / \mathrm{dt}$

Keplerian orbit in space

Six orbit elements:

- $\mathrm{i}=$ inclination relative to reference plane:

$$
\cos \iota=\hat{\boldsymbol{h}} \cdot \boldsymbol{e}_{Z}
$$

- $\Omega=$ angle of ascending node

$$
\cos \Omega=-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{e}_{Y}}{\sin \iota}
$$

- $\omega=$ angle of pericenter

$$
\sin \omega=\frac{\boldsymbol{A} \cdot \boldsymbol{e}_{z}}{e \sin \iota}
$$

- $e=|A|$
- $a=h^{\wedge} 2 / G m\left(1-e^{2)}\right.$
- $T=$ time of pericenter passage

$$
T=t-\int_{0}^{f} \frac{r^{2}}{h} d f
$$

Osculating orbit elements and the perturbed Kepler problem

$$
\boldsymbol{a}=-\frac{G m \boldsymbol{r}}{r^{3}}+\boldsymbol{f}(\boldsymbol{r}, \boldsymbol{v}, t)
$$

Same $\mathbf{x} \& \mathbf{v}$

Define:

$$
\begin{aligned}
& \boldsymbol{r}:= r \boldsymbol{n}, \quad r:=p /(1+e \cos f), \quad p=a\left(1-e^{2}\right) \\
& \boldsymbol{v}:= \frac{h e \sin f}{p} \boldsymbol{n}+\frac{h}{r} \boldsymbol{\lambda}, \quad h:=\sqrt{G m p} \\
& \boldsymbol{n}:= {[\cos \Omega \cos (\omega+f)-\cos \iota \sin \Omega \sin (\omega+f)] \boldsymbol{e}_{X} } \\
&+[\sin \Omega \cos (\omega+f)+\cos \iota \cos \Omega \sin (\omega+f)] \boldsymbol{e}_{Y} \\
&+\sin \iota \sin (\omega+f) \boldsymbol{e}_{Z} \\
& \boldsymbol{\lambda}:= {[-\cos \Omega \sin (\omega+f)-\cos \iota \sin \Omega \cos (\omega+f)] \boldsymbol{e}_{X} } \\
&+[-\sin \Omega \sin (\omega+f)+\cos \iota \cos \Omega \cos (\omega+f)] \boldsymbol{e}_{Y} \\
&+\sin \iota \cos (\omega+f) \boldsymbol{e}_{Z} \\
& \hat{\boldsymbol{h}}:= \boldsymbol{n} \times \boldsymbol{\lambda}=\sin \iota \sin \Omega \boldsymbol{e}_{X}-\sin \iota \cos \Omega \boldsymbol{e}_{Y}+\cos \iota \boldsymbol{e}_{Z} \\
& \mathrm{e}, \mathrm{a}, \omega, \Omega, \mathbf{i}, \text { T may be functions of time }
\end{aligned}
$$

Perturbed Kepler problem

$$
\begin{gathered}
\boldsymbol{a}=-\frac{G m \boldsymbol{r}}{r^{3}}+\boldsymbol{f}(\boldsymbol{r}, \boldsymbol{v}, t) \\
\boldsymbol{h}=\boldsymbol{r} \times \boldsymbol{v} \Longrightarrow \frac{d \boldsymbol{h}}{d t}=\boldsymbol{r} \times \boldsymbol{f} \\
\boldsymbol{A}=\frac{\boldsymbol{v} \times \boldsymbol{h}}{G m}-\boldsymbol{n} \Longrightarrow G m \frac{d \boldsymbol{A}}{d t}=\boldsymbol{f} \times \boldsymbol{h}+\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{f})
\end{gathered}
$$

Decompose: $\boldsymbol{f}=\mathcal{R} \boldsymbol{n}+\mathcal{S} \boldsymbol{\lambda}+\mathcal{W} \hat{\boldsymbol{h}}$

$$
\begin{aligned}
\frac{d \boldsymbol{h}}{d t} & =-r \mathcal{W} \boldsymbol{\lambda}+r \mathcal{S} \hat{\boldsymbol{h}} \\
G m \frac{d \boldsymbol{A}}{d t} & =2 h \mathcal{S} \boldsymbol{n}-(h \mathcal{R}+r \dot{r} \mathcal{S}) \boldsymbol{\lambda}-r \dot{r} \mathcal{W} \hat{\boldsymbol{h}} .
\end{aligned}
$$

Example: $\quad \dot{h}=r \mathcal{S}$

$$
\frac{d}{d t}(h \cos \iota)=\dot{\boldsymbol{h}} \cdot \boldsymbol{e}_{Z}
$$

$\dot{h} \cos \iota-h \frac{d \iota}{d t} \sin \iota=-r \mathcal{W} \cos (\omega+f) \sin \iota+r \operatorname{Scos} \iota$

Perturbed Kepler problem

"Lagrange planetary equations"

$$
\begin{aligned}
\frac{d p}{d t} & =2 \sqrt{\frac{p^{3}}{G m}} \frac{1}{1+e \cos f} \mathcal{S}, \\
\frac{d e}{d t} & =\sqrt{\frac{p}{G m}}\left[\sin f \mathcal{R}+\frac{2 \cos f+e\left(1+\cos ^{2} f\right)}{1+e \cos f} \mathcal{S}\right], \\
\frac{d \iota}{d t} & =\sqrt{\frac{p}{G m}} \frac{\cos (\omega+f)}{1+e \cos f} \mathcal{W}, \\
\sin \iota \frac{d \Omega}{d t} & =\sqrt{\frac{p}{G m}} \frac{\sin (\omega+f)}{1+e \cos f} \mathcal{W}, \\
\frac{d \omega}{d t} & =\frac{1}{e} \sqrt{\frac{p}{G m}}\left[-\cos f \mathcal{R}+\frac{2+e \cos f}{1+e \cos f} \sin f \mathcal{S}-e \cot \iota \frac{\sin (\omega+f)}{1+e \cos f} \mathcal{W}\right]
\end{aligned}
$$

An alternative pericenter angle:

$$
\begin{aligned}
\varpi & :=\omega+\Omega \cos \iota \\
\frac{d \varpi}{d t} & =\frac{1}{e} \sqrt{\frac{p}{G m}}\left[-\cos f \mathcal{R}+\frac{2+e \cos f}{1+e \cos f} \sin f \mathcal{S}\right]
\end{aligned}
$$

Perturbed Kepler problem

Comments:

- these six $1^{\text {st-order ODEs are exactly equivalent to the original }}$
three 2nd-order ODEs
- if $\mathbf{f}=0$, the orbit elements are constants
- if $\mathbf{f} \ll \mathrm{Gm} / \mathrm{r} 2$, use perturbation theory
- yields both periodic and secular changes in orbit elements
- can convert from d / dt to d / df using

$$
\frac{d f}{d t}=\left(\frac{d f}{d t}\right)_{\text {Kepler }}-\left(\frac{d \omega}{d t}+\cos \iota \frac{d \Omega}{d t}\right)
$$

Drop if working to

 1st order
Perturbed Kepler problem

Worked example: perturbations by a third body

$$
\begin{gathered}
\boldsymbol{a}_{1}=-G m_{2} \frac{\boldsymbol{r}_{12}}{r_{12}^{3}}-G m_{3} \frac{\boldsymbol{r}_{13}}{r_{13}^{3}}, \\
\boldsymbol{a}_{2}=+G m_{1} \frac{\boldsymbol{r}_{12}}{r_{12}^{3}}-G m_{3} \frac{\boldsymbol{r}_{23}}{\boldsymbol{r}_{23}^{3}} \\
\boldsymbol{a}=\frac{G m \boldsymbol{r}}{r^{3}}-\frac{G m_{3} r}{R^{3}}[\boldsymbol{n}-3(\boldsymbol{n} \cdot \boldsymbol{N}) \boldsymbol{N}]+O\left(G m_{3} r^{2} / R^{4}\right) \\
R:=\left|\boldsymbol{r}_{23}\right|, N:=\boldsymbol{r}_{23} /\left|\boldsymbol{r}_{23}\right|, m:=m_{1}+m_{2} \\
\mathcal{R}:=\boldsymbol{f} \cdot \boldsymbol{n}=-\frac{G m_{3} r}{R^{3}}\left[1-3(\boldsymbol{n} \cdot \boldsymbol{N})^{2}\right], \\
\mathcal{S}:=\boldsymbol{f} \cdot \boldsymbol{\lambda}=3 \frac{G m_{3} r}{R^{3}}(\boldsymbol{n} \cdot \boldsymbol{N})(\boldsymbol{\lambda} \cdot \boldsymbol{N}), \\
\mathcal{W}:=\boldsymbol{f} \cdot \hat{\boldsymbol{h}}=3 \frac{G m_{3} r}{R^{3}}(\boldsymbol{n} \cdot \boldsymbol{N})(\hat{\boldsymbol{h}} \cdot \boldsymbol{N})
\end{gathered}
$$

Put third body on a circular orbit

$$
\boldsymbol{N}=\boldsymbol{e}_{X} \cos F+\boldsymbol{e}_{Y} \sin F, \quad \frac{d F}{d t}=\sqrt{\frac{G\left(m+m_{3}\right)}{R^{3}}} \ll \frac{d f}{d t}
$$

Perturbed Kepler problem

Worked example: perturbations by a third body
Integrate over from 0 to 2π holding F fixed, then average over F from 0 to $2 ז$

$$
\begin{aligned}
& \langle\Delta a\rangle=0 \\
& \langle\Delta e\rangle=\frac{15 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3} e\left(1-e^{2}\right)^{1 / 2} \sin ^{2} \iota \sin \omega \cos \omega \\
& \langle\Delta \omega\rangle=\frac{3 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3}\left(1-e^{2}\right)^{-1 / 2}\left[5 \cos ^{2} \iota \sin ^{2} \omega+\left(1-e^{2}\right)\left(5 \cos ^{2} \omega-3\right)\right] \\
& \langle\Delta \iota\rangle=-\frac{15 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3} e^{2}\left(1-e^{2}\right)^{-1 / 2} \sin \iota \cos \iota \sin \omega \cos \omega \\
& \langle\Delta \Omega\rangle=-\frac{3 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3}\left(1-e^{2}\right)^{-1 / 2}\left(1-5 e^{2} \cos ^{2} \omega+4 e^{2}\right) \cos \iota
\end{aligned}
$$

Also:

$$
\langle\Delta \varpi\rangle=\frac{3 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3}\left(1-e^{2}\right)^{1 / 2}\left[1+\sin ^{2} \iota\left(1-5 \sin ^{2} \omega\right)\right]
$$

Perturbed Kepler problem

Worked example: perturbations by a third body
Case 1: coplanar $3^{\text {rd body and Mercury's perihelion }(i=0)}$

$$
\langle\Delta \varpi\rangle=\frac{3 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3}\left(1-e^{2}\right)^{1 / 2}
$$

Planet	Semi-major axis (AU)	Orbital period (yr)	Eccentricity	Inclination to ecliptic o. '."	Inverse mass $1 / M_{\odot}=1$
Mercury	0.387099	0.24085	0.205628	7.0 .15	6010000
Venus	0.723332	0.61521	0.006787	3.23 .40	408400
Earth	1.000000	1.00004	0.016722	0.0 .0	328910
Mars	1.523691	1.88089	0.093377	1.51 .0	3098500
Jupiter	5.202803	11.86223	0.04845	1.18 .17	1047.39
Saturn	9.53884	29.4577	0.05565	2.29.22	3498.5

For Jupiter:
$d \varpi / d t=154$ as per century (153.6)
For Earth
$d \varpi / d t=62$ as per century (90)

Mercury's Perihelion: Trouble to Triumph

- 1687 Newtonian triumph
- 1859 Leverrier's conundrum
- 1900 A turn-of-the century crisis

Planet	Advance
Venus	277.8
Earth	90.0
Mars	2.5
Jupiter	153.6
Saturn	7.3
Total	531.2
Discrepancy	42.9
Modern measured value	42.98 ± 0.02
General relativity prediction	42.98

Perturbed Kepler problem

Worked example: perturbations by a third body

Case 2: the Kozai-Lidov mechanism

$$
\begin{aligned}
& \langle\Delta a\rangle=0 \\
& \langle\Delta e\rangle=\frac{15 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3} e\left(1-e^{2}\right)^{1 / 2} \sin ^{2} \iota \sin \omega \cos \omega \\
& \langle\Delta \omega\rangle=\frac{3 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3}\left(1-e^{2}\right)^{-1 / 2}\left[5 \cos ^{2} \iota \sin ^{2} \omega+\left(1-e^{2}\right)\left(5 \cos ^{2} \omega-3\right)\right]
\end{aligned}
$$

$$
\langle\Delta \iota\rangle=-\frac{15 \pi}{2} \frac{m_{3}}{m}\left(\frac{a}{R}\right)^{3} e^{2}\left(1-e^{2}\right)^{-1 / 2} \sin \iota \cos \iota \sin \omega \cos \omega \quad \text { Stationary point: }
$$

A conserved quantity:

$$
\frac{e}{1-e^{2}} \cos \iota\langle\Delta e\rangle+\sin \iota\langle\Delta \iota\rangle=0
$$

$$
\Longrightarrow \sqrt{1-e^{2}} \cos \iota=\text { constant } \quad L_{\mathrm{Z}!}
$$

Perturbed Kepler problem

Worked example: perturbations by a third body
Case 2: the Kozai-Lidov mechanism

Eccentricity

Inclination

Pericenter

Incorporating post-Newtonian effects

Perturbed Kepler problem

Worked example: body with a quadrupole moment

$$
\boldsymbol{a}=\frac{G m \boldsymbol{r}}{r^{3}}-\frac{3}{2} J_{2} \frac{G m R^{2}}{r^{4}}\left\{\left[5(\boldsymbol{e} \cdot \boldsymbol{n})^{2}-1\right] \boldsymbol{n}-2(\boldsymbol{e} \cdot \boldsymbol{n}) \boldsymbol{e}\right\}
$$

$$
\Delta a=0, \Delta e=0, \Delta \iota=0
$$

$$
\Delta \omega=6 \pi J_{2}\left(\frac{R}{p}\right)^{2}\left(1-\frac{5}{4} \sin ^{2} \iota\right)
$$

$$
\text { For Mercury }\left(J_{2}=2.2 \times 10^{-7)}\right.
$$

$$
\Delta \Omega=-3 \pi J_{2}\left(\frac{R}{p}\right)^{2} \cos \iota
$$

$$
\frac{d \varpi}{d t}=0.03 \mathrm{as} / \text { century }
$$

For Earth satellites $\left(J_{2}=1.08 \times 10^{-3)}\right.$

$$
\frac{d \Omega}{d t}=-3639 \cos \iota\left(\frac{R}{a}\right)^{7 / 2} \mathrm{deg} / \mathrm{yr}
$$

- LAGEOS ($\mathrm{a}=1.93 \mathrm{R}, \mathrm{i}=1090.8$: $120 \mathrm{deg} / \mathrm{yr}$!
- Sun synchronous: $a=1.5 \mathrm{R}, \mathrm{i}=65.9$

Outline of the Lectures*

Part 1: Newtonian Gravity

- Foundations
- Equations of hydrodynamics
- Spherical and nearly spherical bodies
- Motion of extended fluid bodies

Part 2: Newtonian Celestial Mechanics

- Two-body Kepler problem
- Perturbed Kepler problem
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

The Einstein Equivalence Principle

- Test bodies fall with the same acceleration

Weak Equivalence Principle (WEP)

- In a local freely falling frame, physics (nongravitational) is independent of frame's velocity
Local Lorentz Invariance (LLII)
- In a local freely falling frame, physics (nongravitational) is independent of frame's location Local Position Invariance (LPI)

```
EEP => Metric theory of gravity
```

```
- }\mp@subsup{\eta}{\mu\nu}{}\mathrm{ locally -> symmetric }\mp@subsup{g}{\mu\nu}{
```

- "comma" -> "semicolon"
Gravity = Geometry

"Curved spacetime tells matter how to move"

$$
\begin{aligned}
S & =-m c^{2} \int_{1}^{2} d \tau \\
& =-m c \int_{1}^{2} \sqrt{-g_{\alpha \beta} \frac{d r^{\alpha}}{d t} \frac{d r^{\beta}}{d t}} d t
\end{aligned}
$$

Euler-Lagrange equations (using τ as parameter):

$$
\frac{d^{2} r^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d r^{\alpha}}{d \tau} \frac{d r^{\beta}}{d \tau}=0
$$

Christoffel symbols

$$
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\alpha} g_{\nu \beta}+\partial_{\beta} g_{\nu \alpha}-\partial_{\nu} g_{\alpha \beta}\right)
$$

"Gradient" of a vector

$$
\begin{aligned}
\nabla_{\beta} \vec{A} & =\left(\partial_{\beta} A^{\alpha}\right) \vec{e}_{\alpha}+A^{\alpha}\left(\partial_{\beta} \vec{e}_{\alpha}\right) \\
& =\left(\partial_{\beta} A^{\alpha}\right) \vec{e}_{\alpha}+A^{\gamma} \Gamma^{\alpha}{ }_{\gamma \beta} \vec{e}_{\alpha} \\
& =\nabla_{\beta} A^{\alpha} \vec{e}_{\alpha}
\end{aligned}
$$

A geodesic parallel transports its own tangent vecto $\nabla_{\vec{u}} \vec{u}=0$

"Curved spacetime tells matter how to move"

Continuous matter, stress energy tensor
Perfect fluid: $T^{\alpha \beta}=\left(\rho c^{2}+\epsilon+p\right) u^{\alpha} u^{\beta} / c^{2}+p g^{\alpha \beta}$

$$
\begin{gathered}
j^{\alpha}=\rho u^{\alpha} \\
\nabla_{\beta} T^{\alpha \beta}=0, \nabla_{\alpha} j^{\alpha}=0
\end{gathered}
$$

$\rho=$ rest mass density
$\varepsilon=$ energy density
p = pressure
$u^{\alpha}=$ four velocity
1st law of Thermodynamics

$$
u_{\alpha} \nabla_{\beta} T^{\alpha \beta}=0=\frac{d \varepsilon}{d \tau}+(\varepsilon+p) \nabla \cdot \vec{u} \quad d(\varepsilon \mathcal{V})+p d \mathcal{V}=0
$$

Relativistic Euler equation

$$
(\mu+p) \frac{D u^{\alpha}}{d \tau}=-c^{2}\left(g^{\alpha \beta}+u^{\alpha} u^{\beta} / c^{2}\right) \nabla_{\beta} p
$$

Compare with Newton

$$
\rho \frac{d \boldsymbol{v}}{d t}+\nabla U=-\nabla p
$$

"Matter tells spacetime how to curve"

Riemann tensor $R_{\beta \gamma \delta}^{\alpha}=\partial_{\gamma} \Gamma_{\beta \delta}^{\alpha}-\partial_{\delta} \Gamma_{\beta \gamma}^{\alpha}+\Gamma_{\mu \gamma}^{\alpha} \Gamma_{\beta \delta}^{\mu}-\Gamma_{\mu \delta}^{\alpha} \Gamma_{\beta \gamma}^{\alpha}$
Ricci tensor $\quad R_{\alpha \beta}=R_{\alpha \mu \beta}^{\mu}$
Ricci scalar $\quad R=g^{\alpha \beta} R_{\alpha \beta}$
Einstein tensor $\quad G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R$
Bianchi identities $\quad \nabla_{\beta} G^{\alpha \beta}=0$
Action

$$
S=\frac{c^{3}}{16 \pi G} \int \sqrt{-g} R d^{4} x+S_{\text {matter }}
$$

Einstein's equations: $\quad G^{\alpha \beta}=\frac{8 \pi G}{c^{4}} T^{\alpha \beta}$

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Landau-Lifshitz Formulation of GR

Post-Newtonian and post-Minkowskian theory start with the Landau-Lifshitz formulation

Define the "gothic" metric densityg ${ }^{\alpha \beta} \equiv \sqrt{-g} g^{\alpha \beta}$
Then Einstein's equations can be written in the form

$$
\begin{aligned}
\partial_{\mu \nu} H^{\alpha \mu \beta \nu} & =\frac{16 \pi G}{c^{4}}(-g)\left(T^{\alpha \beta}+t_{\mathrm{LL}}^{\alpha \beta}\right) \\
H^{\alpha \mu \beta \nu} & \equiv \mathfrak{g}^{\alpha \beta} \mathfrak{g}^{\mu \nu}-\mathfrak{g}^{\alpha \nu} \mathfrak{g}^{\beta \mu} \\
t_{\mathrm{LL}}^{\alpha \beta} & \sim \partial \mathfrak{g} \cdot \partial \mathfrak{g}
\end{aligned}
$$

Antisymmetry of $\mathrm{H}^{\alpha u \beta v}$ implies the conservation equation

$$
\partial_{\beta}\left[(-g)\left(T^{\alpha \beta}+t_{\mathrm{LL}}^{\alpha \beta}\right)\right]=0 \Longleftrightarrow \nabla_{\beta} T^{\alpha \beta}=0
$$

Landau-Lifshitz Formulation of GR

Conservation equation allows the formulation of global conservation laws:

$$
\begin{aligned}
E & \equiv \int(-g)\left(T^{00}+t_{\mathrm{LL}}^{00}\right) d^{3} x \\
\frac{d E}{d t} & =\oint(-g) t_{\mathrm{LL}}^{0 j} d^{2} S_{j}
\end{aligned}
$$

Similar conservation laws for linear momentum, angular momentum, and motion of a center of mass, with

$$
\begin{aligned}
P^{j} & \equiv \frac{1}{c} \int(-g)\left(T^{j 0}+t_{\mathrm{LL}}^{j 0}\right) d^{3} x \\
J^{j} & \equiv \frac{1}{c} \epsilon^{j k l} \int(-g) x^{k}\left(T^{l 0}+t_{\mathrm{LL}}^{l 0}\right) d^{3} x \\
X^{j} & \equiv \frac{1}{E} \int(-g) x^{j}\left(T^{00}+t_{\mathrm{LL}}^{00}\right) d^{3} x
\end{aligned}
$$

Landau-Lifshitz Formulation of GR

Define potentials $h^{\alpha \beta} \equiv \eta^{\alpha \beta}-\mathfrak{g}^{\alpha \beta}$
Impose a coordinate condition (gauge): Harmonic or deDonder gauge

$$
\partial_{\beta} h^{\alpha \beta}=0 \quad \square_{g} x^{(\alpha)}=0
$$

| Matter tells
 spacetime how to
 curve | $\square h^{\alpha \beta}$ | $=-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}$ |
| ---: | :--- | ---: | :--- |
| | \square | $\equiv \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ |
| Spacetime
 tells matter
 how to
 move | $\tau^{\alpha \beta}$ | $\equiv(-g)\left(T^{\alpha \beta}[\mathrm{m}, g]+t_{\mathrm{LL}}^{\alpha \beta}[h]+t_{\mathrm{H}}^{\alpha \beta}[h]\right)$ |
| | $t_{\mathrm{H}}^{\alpha \beta}$ | $\sim \partial h \cdot \partial h+h \partial \partial h$ |
| $\partial_{\beta} \tau^{\alpha \beta}$ | $=0$ | |

Still equivalent to the exact Einstein equations

The "Relaxed" Einstein Equations

$$
\square h^{\alpha \beta}=-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}
$$

$$
\partial_{\beta} \tau^{\alpha \beta}=0
$$

Solve for h as a functional of matter
variables

Solve for evolution of matter
variables to give $h(t, x)$

terating the "Relaxed" Einstein Equatio

Assume that $h^{\alpha \beta}$ is "small", and iterate the relaxed equation:

$$
\begin{aligned}
\square h_{N+1}^{\alpha \beta} & =-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}\left(h_{N}\right) \\
h_{N+1}^{\alpha \beta} & =\frac{4 G}{c^{4}} \int \frac{\tau^{\alpha \beta}\left(h_{N}\right)\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

Start with $h_{0}=0$ and truncate at a desired N
Yields an expansion in powers of G , called a post-Minkowskian expansion

Find the motion of matter using

$$
\partial_{\beta} \tau^{\alpha \beta}\left(h_{N}\right)=0
$$

jolving the "Relaxed" Einstein Equation

$$
\begin{aligned}
& \square \psi=-4 \pi \mu \Longrightarrow \psi=\int_{\mathcal{C}} \frac{\mu\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \mathcal{N}: r^{\prime}<\mathcal{R}, \quad \mathscr{D} \\
& \mathcal{W}: r^{\prime}>\mathcal{R} \\
& \mathcal{R} \sim \text { wavelength } \\
& \quad \sim s / v \\
& \psi=\mathscr{N}(x) \\
& \psi=\psi_{\mathcal{N}}+\psi_{\mathcal{W}}
\end{aligned}
$$

$\mathscr{W}(x)$
jolving the "Relaxed" Einstein Equation Far zone
Near zone integral: $\psi_{\mathcal{N}}$
For $x \gg x^{\prime}$, Taylor expand $\left|x-x^{\prime}\right|$

$$
\begin{gathered}
\frac{\mu\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c, \boldsymbol{y}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} x^{\prime L} \partial_{L} \frac{\mu(t-r / c, \boldsymbol{y})}{r} \\
\psi_{\mathcal{N}}(t, \boldsymbol{x})=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} \partial_{L}\left[\frac{1}{r} \int_{\mathcal{M}} \mu\left(\tau, \boldsymbol{x}^{\prime}\right) x^{\prime L} d^{3} x^{\prime}\right]
\end{gathered}
$$

A multipole expansion

$$
\tau=t-R / c
$$

Integrals depend on R

Jolving the "Relaxed" Einstein Equation Far zone

Far zone integral: $\psi_{\mathcal{W}}$
ince contributions to μ in the far zone come from retarded fields, ave the generic form

$$
\mu \sim f\left(\tau^{\prime}, \theta^{\prime}, \phi^{\prime}\right) / r^{\prime n}
$$

Change variables from ($r^{\prime}, \theta^{\prime}, \phi^{\prime}$)
to ($u^{\prime}, \theta^{\prime}, \phi^{\prime}$), where $u^{\prime}=c \tau^{\prime}=c t^{\prime}-r^{\prime}$

$$
u^{\prime}+r^{\prime}=c t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|
$$

jolving the "Relaxed" Einstein Equation Far zone

Far zone integral: $\psi_{\mathcal{W}}$

$$
\psi_{\mathcal{W}}=\frac{1}{4 \pi} \int_{-\infty}^{u} d u^{\prime} \oint_{\mathcal{S}\left(u^{\prime}\right)} \frac{f\left(u^{\prime} / c, \theta^{\prime}, \phi^{\prime}\right)}{r^{\prime}\left(u^{\prime}, \theta^{\prime}, \phi^{\prime}\right)^{n-2}} \frac{d \Omega^{\prime}}{c t-u^{\prime}-\boldsymbol{n}^{\prime} \cdot \boldsymbol{x}}
$$

Integral also depends on R
But $\quad \psi=\psi_{\mathcal{N}}+\psi_{\mathcal{W}}$ is independent of R

Gravity as a source of gravity and gravitational "tails"

olving the "Relaxed" Einstein Equation Near zone
Near zone integral: $\psi_{\mathcal{N}}$
For $\mathrm{x} \sim \mathrm{x}^{\prime}$, Taylor expand about t

$$
\begin{gathered}
\mu\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c\right)=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!c^{\ell}}\left(\frac{\partial}{\partial t}\right)^{\ell} \mu\left(t, \boldsymbol{x}^{\prime}\right)\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{\ell} \\
\psi_{\mathcal{N}}(t, \boldsymbol{x})=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!c^{\ell}}\left(\frac{\partial}{\partial t}\right)^{\ell} \int_{\mathcal{M}} \mu\left(t, \boldsymbol{x}^{\prime}\right)\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{\ell-1} d^{3} x^{\prime}
\end{gathered}
$$

- A post-Newtonian expansion in powers of $1 / \mathrm{c}$
- Instantaneous potentials
- Must also calculate the far-zone integral $\psi_{\mathcal{W}}$

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Near zone physics; Motion of extended fluid bodies

Matter variables:

rescaled mass density : $\rho^{*} \equiv \rho \sqrt{-g}\left(u^{0} / c\right)$
proper pressure : p
internal energy per unit mass : Π
four - velocity of fluid element : $u^{\alpha}=u^{0}(1, \boldsymbol{v} / c)$

$$
\nabla_{\alpha}\left(\rho u^{\alpha}\right)=0 \Longleftrightarrow \frac{\partial \rho^{*}}{\partial t}+\nabla\left(\rho^{*} v\right)=0
$$

Slow-motion assumption v/c $\ll 1$:

$$
\begin{array}{rlr}
T^{0 j} / T^{00} \sim v / c, & T^{j k} / T^{00} \sim(v / c)^{2} \\
h^{0 j} / h^{00} \sim v / c, & h^{j k} / h^{00} \sim(v / c)^{2}
\end{array}
$$

ost-Newtonian approximation: Near zon

Recall the action for a geodesic

$$
\begin{array}{rlrl}
S & =-m c^{2} \int_{1}^{2} d \tau & \frac{G m}{r c^{2}} \sim \frac{v^{2}}{c^{2}} \sim \epsilon \\
& =-m c \int_{1}^{2} \sqrt{-g_{\alpha \beta} \frac{d r^{\alpha}}{d t} \frac{d r^{\beta}}{d t} d t} & \\
& =-m c \int_{1}^{2}(1-\underbrace{2 \frac{U}{c^{2}}}_{\varepsilon}-\underbrace{\delta g_{00}}_{\varepsilon^{2}}-\underbrace{2 \frac{v^{j}}{c} \delta g_{0 j}}_{\varepsilon}-\frac{v^{2}}{c^{2}}-\frac{v^{i} v^{j}}{c^{2}} \delta g_{i j})^{1 / 2} d t
\end{array}
$$

We need to calculate

$$
\begin{array}{lll}
\delta g_{00} & \text { to } & O\left(\epsilon^{2}\right) \\
\delta g_{0 j} & \text { to } & O\left(\epsilon^{3 / 2}\right) \\
\delta g_{i j} & \text { to } & O(\epsilon)
\end{array}
$$

Two iterations of the relaxed equations required

ost-Newtonian limit of general relativit

$$
\begin{aligned}
& g_{00}=-1+\frac{2}{c^{2}} U+\frac{2}{c^{4}}\left(\psi+\frac{1}{2} \partial_{t t} X-U^{2}\right)+O\left(c^{-6}\right), \\
& g_{0 j}=-\frac{4}{c^{3}} U_{j}+O\left(c^{-5}\right) \\
& g_{j k}=\delta_{j k}\left(1+\frac{2}{c^{2}} U\right)+O\left(c^{-4}\right),
\end{aligned}
$$

g

$$
\begin{aligned}
U(t, \boldsymbol{x}) & :=G \int \frac{\rho^{* \prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
\psi(t, \boldsymbol{x}) & :=G \int \frac{\rho^{* \prime}\left(\frac{3}{2} v^{\prime 2}-U^{\prime}+\Pi^{\prime}+3 p^{\prime} / \rho^{* \prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
X(t, \boldsymbol{x}) & :=G \int \rho^{* \prime}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3} x^{\prime} \\
U^{j}(t, \boldsymbol{x}) & :=G \int \frac{\rho^{* \prime} v^{\prime j}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

Bounds on the PPN Parameters

Parameter	Effect or Experiment	Bound	Remarks
$\gamma-1$	Time delay	2.3×10^{-5}	Cassini tracking
	Light deflection	2×10^{-4}	VLBI
$\beta-1$	Perihelion shift	8×10^{-5}	$\mathrm{J}_{2}=2.2 \times 10^{-7}$
	Nordtvedt effect	2.3×10^{-4}	LLR, $\eta<3 \times 10^{-4}$
ξ	Spin Precession	4×10^{-9}	Millisecond pulsars
α_{1}	Orbit polarization	10^{-4}	LLR
		4×10^{-5}	Pulsar J 1738+0333
α_{2}	Spin precession	2×10^{-9}	Millisecond pulsars
α_{3}	Self-acceleration	4×10^{-20}	Pulsar spindown
ζ_{1}	--	2×10^{-2}	Combined bounds
ζ_{2}	Binary acceleration	4×10^{-5}	PSR 1913+16
ζ_{3}	Newton's 3rd law	10^{-8}	Lunar acceleration
	$0 \varepsilon / 3-\alpha$		Not independent

Post-Newtonian Hydrodynamics

$$
\text { From } \nabla_{\beta} T^{\alpha \beta}=0
$$

Post-Newtonian equation of hydrodynamics

$$
\begin{aligned}
\rho^{*} \frac{d v^{j}}{d t}= & -\partial_{j} p+\rho^{*} \partial_{j} U \\
& +\frac{1}{c^{2}}\left[\left(\frac{1}{2} v^{2}+U+\Pi+\frac{p}{\rho^{*}}\right) \partial_{j} p-v^{j} \partial_{t} p\right] \\
& +\frac{1}{c^{2}} \rho^{*}\left[\left(v^{2}-4 U\right) \partial_{j} U-v^{j}\left(3 \partial_{t} U+4 v^{k} \partial_{k} U\right)\right. \\
& \left.\quad+4 \partial_{t} U_{j}+4 v^{k}\left(\partial_{k} U_{j}-\partial_{j} U_{k}\right)+\partial_{j} \Psi\right] \\
& +O\left(c^{-4}\right)
\end{aligned}
$$

N -body equations of motion

Main assumptions:

- Bodies small compared to typical separation ($R \ll \boldsymbol{V}$)
- "isolated" -- no mass flow
- ignore contributions that scale as R^{n}
- assume bodies are reflection symmetric

$$
\text { mass }: \quad m_{A} \equiv \int_{A} \rho^{*} d^{3} x
$$

position : $\quad \boldsymbol{r}_{A}(t) \equiv \frac{1}{m_{A}} \int_{A} \rho^{*} \boldsymbol{x} d^{3} x$
velocity : $\quad \boldsymbol{v}_{A}(t) \equiv \frac{1}{m_{A}} \int_{A} \rho^{*} \boldsymbol{v} d^{3} x=\frac{d \boldsymbol{r}_{A}}{d t}$
acceleration : $\quad \boldsymbol{a}_{A}(t) \equiv \frac{1}{m_{A}} \int_{A} \rho^{*} \boldsymbol{a} d^{3} x=\frac{d \boldsymbol{v}_{A}}{d t}$

$$
\boldsymbol{x} \equiv \boldsymbol{r}_{A}(t)+\overline{\boldsymbol{x}}
$$

N -body equations of motion

Dependence on internal structure?

$$
\begin{aligned}
\mathcal{T}_{A} & \equiv \frac{1}{2} \int_{A} \rho^{*} \bar{v}^{2} d^{3} \bar{x}, & P_{A} \equiv \int_{A} p d^{3} \bar{x} \\
\Omega_{A} & \equiv-\frac{1}{2} G \int_{A} \frac{\rho^{*} \rho^{* \prime}}{\left|\overline{\boldsymbol{x}}-\overline{\boldsymbol{x}}^{\prime}\right|} d^{3} \bar{x}^{\prime} d^{3} \bar{x}, & E_{A}^{\mathrm{int}} \equiv \int_{A} \rho^{*} \Pi d^{3} \bar{x}
\end{aligned}
$$

Use the virial theorem:

$$
2 \mathcal{T}_{A}+\Omega_{A}+3 P_{A}=0
$$

Then all structure integrals can be absorbed into a single "total" mass:

$$
M_{A} \equiv m_{A}+\frac{1}{c^{2}}\left(\mathcal{T}_{A}+\Omega_{A}+E_{A}^{\mathrm{int}}\right)+O\left(c^{-4}\right)
$$

This is a manifestation of the Strong Equivalence Principle, satisfied by GR, but not by most alternative theories.
The motions of all bodies, including NS and BH, are independent of their internal structure - in GR!

N -body equations of motion

$$
\begin{aligned}
\boldsymbol{a}_{A}= & -\sum_{B \neq A} \frac{G M_{B}}{r_{A B}^{2}} \boldsymbol{n}_{A B} \\
& +\frac{1}{c^{2}}\left(-\sum_{B \neq A} \frac{G M_{B}}{r_{A B}^{2}}\left[v_{A}^{2}-4\left(\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{B}\right)+2 v_{B}^{2}-\frac{3}{2}\left(\boldsymbol{n}_{A B} \cdot \boldsymbol{v}_{B}\right)^{2}\right.\right. \\
& \left.-\frac{5 G M_{A}}{r_{A B}}-\frac{4 G M_{B}}{r_{A B}}\right] \boldsymbol{n}_{A B} \\
& +\sum_{B \neq A} \frac{G M_{B}}{r_{A B}^{2}}\left[\boldsymbol{n}_{A B} \cdot\left(4 \boldsymbol{v}_{A}-3 \boldsymbol{v}_{B}\right)\right]\left(\boldsymbol{v}_{A}-\boldsymbol{v}_{B}\right) \\
& +\sum_{B \neq A} \sum_{C \neq A, B} \frac{G^{2} M_{B} M_{C}}{r_{A B}^{2}}\left[\frac{4}{r_{A C}}+\frac{1}{r_{B C}}-\frac{r_{A B}}{2 r_{B C}^{2}}\left(\boldsymbol{n}_{A B} \cdot \boldsymbol{n}_{B C}\right)\right] \boldsymbol{n}_{A B} \\
& \left.-\frac{7}{2} \sum_{B \neq A} \sum_{C \neq A, B} \frac{G^{2} M_{B} M_{C}}{r_{A B} r_{B C}^{2}} \boldsymbol{n}_{B C}\right)+O\left(c^{-4}\right) .
\end{aligned}
$$

N -body equations of motion:

 rked example: 2 bodies and the perihelion sh$$
\begin{array}{ll}
\text { Define: } & \boldsymbol{r} \equiv \boldsymbol{r}_{1}-\boldsymbol{r}_{2} \\
& m \equiv M_{1}+M_{2} \\
\boldsymbol{v} \equiv \boldsymbol{v}_{1}-\boldsymbol{v}_{2} & \eta \equiv \frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}} \\
\boldsymbol{a} \equiv \boldsymbol{a}_{1}-\boldsymbol{a}_{2} & \boldsymbol{n} \equiv \boldsymbol{r} / r \\
& \dot{r} \equiv d r / d t=\boldsymbol{n} \cdot \boldsymbol{v}
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{a}= & -\frac{G m}{r^{2}} \boldsymbol{n}-\frac{G m}{c^{2} r^{2}}\left\{\left[(1+3 \eta) v^{2}-\frac{3}{2} \eta \dot{r}^{2}-2(2+\eta) \frac{G m}{r}\right] \boldsymbol{n}\right. \\
& -2(2-\eta) \dot{r} \boldsymbol{v}\}+O\left(c^{-4}\right)
\end{aligned}
$$

N -body equations of motion: rked example: 2 bodies and the perihelion sh

Components of the disturbing force

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{R} & =\frac{G m}{c^{2} r^{2}}\left[-(1+3 \eta) v^{2}+\frac{1}{2}(8-\eta) \dot{r}^{2}+2(2+\eta) \frac{G m}{r}\right], \\
\mathcal{S} & =\frac{G m}{c^{2} r^{2}}[2(2-\eta) \dot{r}(r \dot{\phi})], \\
\mathcal{W} & =0
\end{aligned} \\
& \text { Integrate the Lagrange planetary equations: } \quad 42.98^{\text {"/cc for Mercury }}
\end{aligned}
$$

$$
\begin{aligned}
\Delta e & =\Delta a=0 \\
\Delta \Omega & =\Delta \iota=0 \\
\Delta \omega & =\frac{6 \pi G\left(M_{1}+M_{2}\right)}{a\left(1-e^{2}\right) c^{2}}
\end{aligned}
$$

Mercury's Perihelion: Trouble to Triumph

- 1687 Newtonian triumph
- 1859 Leverrier's conundrum
- 1900 A turn-of-the century crisis

Planet	Advance
Venus	277.8
Earth	90.0
Mars	2.5
Jupiter	153.6
Saturn	7.3
Total	531.2
Discrepancy	42.9
Modern measured value	42.98 ± 0.02
General relativity prediction	42.98

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

terating the "Relaxed" Einstein Equatio

Assume that $h^{\alpha \beta}$ is "small", and iterate the relaxed equation:

$$
\begin{aligned}
\square h_{N+1}^{\alpha \beta} & =-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}\left(h_{N}\right) \\
h_{N+1}^{\alpha \beta} & =\frac{4 G}{c^{4}} \int \frac{\tau^{\alpha \beta}\left(h_{N}\right)\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

Start with $h_{0}=0$ and truncate at a desired N
Yields an expansion in powers of G , called a post-Minkowskian expansion

Find the motion of matter using

$$
\partial_{\beta} \tau^{\alpha \beta}\left(h_{N}\right)=0
$$

Wave Zone Physics: Gravitational Wave:

Geodesic deviation: $\frac{D^{2} \xi^{\alpha}}{d s^{2}}=-R_{\beta \gamma \delta}^{\alpha} u^{\beta} \xi^{\gamma} u^{\delta}$ In the rest frame of an observer

$$
\begin{gathered}
\frac{d^{2} \xi^{j}}{d t^{2}}=-c^{2} R_{0 j 0 k} \xi^{k} \\
=\frac{1}{2} \partial_{\tau \tau} h_{T T}^{j k} \xi^{k} \quad \tau=t-R / c \\
h_{T T}^{j k} \equiv\left(P^{j} P^{p} P_{q}^{k}-\frac{1}{2} P^{j k} P_{p q}\right) h^{p q}, \quad P_{p}^{j}=\delta_{p}^{j}-N^{j} N_{p} \\
N_{j} h_{T T}^{i j}=0 \\
\delta_{j k} h_{T T}^{i j}=0
\end{gathered}
$$

Wave Zone Physics: Gravitational Wave:

The quadrupole formula:

Requires two iterations of the relaxed Einstein equation:

$$
\begin{aligned}
h_{2}^{i j} \mathrm{TT} & =\frac{4 G}{c^{4}} \int \frac{\tau^{i j}\left(h_{1}\right)\left(t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / c, \boldsymbol{x}^{\prime}\right) \mathrm{TT}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \rightarrow \frac{2 G}{R c^{4}} \ddot{I}_{\mathrm{TT}}^{\langle i j\rangle}(t-R / c) \text { in the far wave-zone } \\
I^{\langle i j\rangle}(t) & =\int \rho^{*}(t, \boldsymbol{x})\left(x^{i} x^{j}-\frac{1}{3} r^{2} \delta^{i j}\right) d^{3} x
\end{aligned}
$$

For an N-body system $\quad \ddot{I}^{\langle i j\rangle}=2 \sum_{A} M_{A} v_{A}^{\langle i j\rangle}-\sum_{A \neq B} \frac{G M_{A} M_{B}}{r_{A B}} n_{A B}^{\langle i j\rangle}$
By convention, the quadrupole formula is called the "Newtonian"-order result
Higher order PN corrections can be calculated by further iterating the relaxed equations
3 iterations needed for $1 \& 1.5$ PN order, 4 for 2 PN order etc

Wave Zone Physics: Gravitational Wave:

Beyond the quadrupole formula:

For a binary system in a circular orbit:

$$
h_{+, x}=\frac{2 \eta G m}{c^{2} R} \beta^{2}\left[\left(1+2 \pi \beta^{3}\right) H_{+, x}^{[0]}+\Delta \beta H_{+, x}^{[1 / 2]}+\beta^{2} H_{+, \times}^{[1]}+\Delta \beta^{3} H_{+, x}^{[3 / 2]}+O\left(\beta^{4}\right)\right]
$$

$$
\begin{array}{rlr}
H_{\times}^{[0]} & =-2 C \sin 2 \Psi, \\
H_{\times}^{[1 / 2]} & =-\frac{3}{4} S C \sin \Psi+\frac{9}{4} S C \sin 3 \Psi, & C=\cos \iota \\
H_{\times}^{[1]} & =\frac{1}{3} C\left[\left(17-4 C^{2}\right)-\left(13-12 C^{2}\right) \eta\right] \sin 2 \Psi-\frac{8}{3}(1-3 \eta) S^{2} C \sin 4 \Psi, \\
H_{\times}^{[3 / 2]} & =\frac{1}{96} S C\left[\left(63-5 C^{2}\right)-2\left(23-5 C^{2}\right) \eta\right] \sin \iota \\
& -\frac{9}{64} S C\left[\left(67-15 C^{2}\right)-2\left(19-15 C^{2}\right) \eta\right] \sin 3 \Psi+\frac{625}{192}(1-2 \eta) S^{3} C \sin 5 \Psi,
\end{array}
$$

$$
\beta=\left(\frac{G m \Omega}{c^{3}}\right)^{1 / 3} \sim \frac{v}{c}, \quad m=M_{1}+M_{2}, \eta=\frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}}, \Delta=\frac{M_{1}-M_{2}}{M_{1}+M_{2}}
$$

Wave Zone Physics: Gravitational Wave:

 Beyond the quadrupole formula:$$
h_{+, x}=\frac{2 \eta G m}{c^{2} R} \beta^{2}\left[\left(1+2 \pi \beta^{3}\right) H_{+, x}^{[0]}+\Delta \beta H_{+, x}^{[1 / 2]}+\beta^{2} H_{+, x}^{[1]}-\Delta \beta^{3} H_{+, x}^{[3 / 2]}-O\left(\beta^{4}\right)\right]
$$

Wave Zone Physics: Energy flux

$$
\begin{aligned}
\frac{d E}{d t} & =c \int \partial_{0} \tau^{00} d^{3} x \\
& =-c \oint(-g) t_{\mathrm{LL}}^{0 j} d S_{j} \\
& =-\frac{c^{3} R^{2}}{16 \pi G} \oint\left[\left(\partial_{t} h_{+}\right)^{2}+\left(\partial_{t} h_{\times}\right)^{2}\right] d \Omega \\
& =-\frac{G}{5 c^{5}} \dddot{I}\left\langle{ }^{\langle p q\rangle} \dddot{I}^{\langle p q\rangle}+O\left(c^{-7}\right)\right.
\end{aligned}
$$

Called the quadrupole formula for energy flux
Also known as the "Newtonian" order contribution
Also a flux of angular momentum $\mathrm{dJ} / \mathrm{dt}$ and of linear momentum dP / d
For a 2-body system:

$$
\frac{d E}{d t}=\frac{8}{15} \eta^{2} \frac{c^{3}}{G}\left(\frac{G m}{c^{2} r}\right)^{4}\left(12 v^{2}-11 \dot{r}^{2}\right)
$$

Energy flux: eccentric orbit

$$
\frac{d E}{d t}=\frac{32}{5} \eta^{2} \frac{c^{5}}{G}\left(\frac{G m}{c^{2} p}\right)^{5}(1+e \cos \phi)^{4}\left[1+2 e \cos \phi+\frac{1}{12} e^{2}\left(1+11 \cos ^{2} \phi\right)\right]
$$

$$
\frac{d E}{d t}
$$

$$
t / P
$$

Energy flux and binary pulsars

Orbit-averaged flux

$$
\frac{d E}{d t}=\frac{32}{5} \eta^{2} \frac{c^{5}}{G}\left(\frac{G m}{c^{2} a}\right)^{5} F(e) \quad F(e)=\frac{1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}}{\left(1-e^{2}\right)^{7 / 2}}
$$

Period decrease $E \propto a^{-1} \propto P^{-2 / 3}$

$$
\begin{gathered}
\frac{d P}{d t}=-\frac{192 \pi}{5}\left(\frac{G \mathcal{M}}{c^{3}} \frac{2 \pi}{P}\right)^{5 / 3} F(e) \\
\mathcal{M} \equiv \eta^{3 / 5} m=\operatorname{chirp} \text { mass }
\end{gathered}
$$

" "Newtonian" GW flux
2.5 PN correction to Newtonian equations of motion

- PN corrections can be calculated, now reaching 4 PN order

PSR 1913+16
Hulse-Taylor binary pulsar

Energy flux and GW interferometers

For a circular orbit, to 3.5 PN order:

$$
\left.\left.\begin{array}{rl}
\nu=\eta=M_{1} M_{2} /\left(M_{1}+M_{2}\right)^{2} & x=\beta^{2 / 3}=\left(G m \Omega / c^{3}\right)^{2 / 3} \sim(v / c)^{2} \\
\frac{d E}{d t}=\frac{32 c^{5}}{5 G} \nu^{2} x^{5} & \left\{1+\left(-\frac{1247}{336}-\frac{35}{12} \nu\right) x+4 \pi x^{3 / 2}\right. \\
& +\left(-\frac{44711}{9072}+\frac{9271}{504} \nu+\frac{65}{18} \nu^{2}\right) x^{2}+\left(-\frac{8191}{672}-\frac{583}{24} \nu\right) \pi x^{5 / 2} \\
& +\left[\frac{6643739519}{69854400}+\frac{16}{3} \pi^{2}-\frac{1712}{105} \gamma_{\mathrm{E}}-\frac{856}{105} \ln (16 x)\right.
\end{array}+\quad+\left(-\frac{134543}{7776}+\frac{41}{48} \pi^{2}\right) \nu-\frac{94403}{3024} \nu^{2}-\frac{775}{324} \nu^{3}\right] x^{3}\right\}
$$

From Blanchet, Living Reviews in Relativity 17, 2 (2014)

Energy flux and GW interferometers

 LIGO Hanford $4 \& 2 \mathrm{~km}$

GEO Hannover 600 m

Kagra Japan 3 km

LIGO South Indigo

Energy flux and GW interferometers

Baker et al. gr-qc/0612024

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Wave Zone Physics: Radiation reaction

Loss of energy at order C^{-5} implies that the dynamics of a system cannot be
conservative at 2.5 PN order

There must be a radiation reaction force \mathbf{F} that dissipates energy according to

$$
\sum_{A} \boldsymbol{F}_{A} \cdot \boldsymbol{v}_{A}=\frac{d E}{d t}
$$

To find this force, we return to the near-zone and iterate the relaxed Einstein equations 3 times to find the metric to 2.5 PN order

That metric is inserted into the equations of motion $\nabla_{\beta} T^{\alpha \beta}=0$
There are Newtonian, 1 PN, 2 PN, 2.5 PN, terms (no 1.5 PN!)
Happily, to find the leading 2.5 PN contributions, it is not necessary to calculate the 2 PN terms explicitly (though that has been done)

Wave Zone Physics: Radiation reaction

Wave Zone Physics: Radiation reaction

Pulling all the contributions together, we find the equations of hydrodynamics to 2.5 PN order

$$
\rho^{*} \frac{d \boldsymbol{v}}{d t}=\rho^{*} \nabla U-\nabla p+O\left(c^{-2}\right)+O\left(c^{-4}\right)+\boldsymbol{f}
$$

Where f is a radiation reaction force density. For body A

$$
\boldsymbol{F}_{A}=\int_{A} \rho^{*} \boldsymbol{f} d^{3} x
$$

For a 2-body system, this leads to a radiation-reaction contribution

$$
\boldsymbol{a}[\mathrm{rr}]=\frac{8}{5} \eta \frac{(G M)^{2}}{c^{5} r^{3}}\left[\left(3 v^{2}+\frac{17}{3} \frac{G M}{r}\right) \dot{r} \boldsymbol{n}-\left(v^{2}+3 \frac{G M}{r}\right) \boldsymbol{v}\right]
$$

This is harmonic gauge (also called Damour-Deruelle gauge)

Wave Zone Physics: Radiation reaction

Alternative gauge: the Burke-Thorne gauge. All RR effects embodied in a modification of the Newtonian potential

$$
U \rightarrow U-\frac{G}{5 c^{5}} \frac{d^{5} I^{\langle j k\rangle}}{d t^{5}} x^{j} x^{k}
$$

For a two body system

$$
\boldsymbol{a}[\mathrm{rr}]=\frac{8}{5} \eta \frac{(G M)^{2}}{c^{5} r^{3}}\left[\left(18 v^{2}+\frac{2}{3} \frac{G M}{r}-25 \dot{r}^{2}\right) \dot{r} \boldsymbol{n}-\left(6 v^{2}-2 \frac{G M}{r}-15 \dot{r}^{2}\right) \boldsymbol{v}\right]
$$

In any gauge, orbital damping precisely matches wave-zone fluxes:

$$
\begin{aligned}
\frac{d E}{d t}= & \frac{8}{15} \eta^{2} \frac{c^{3}}{G}\left(\frac{G m}{c^{2} r}\right)^{4}\left(12 v^{2}-11 \dot{r}^{2}\right), \\
\frac{d J^{j}}{d t}= & \frac{8}{5} \eta^{2} \frac{c}{G}\left(\frac{G m}{c^{2} r}\right)^{3} h^{j}\left(2 v^{2}-3 \dot{r}^{2}+2 \frac{G m}{r}\right), \\
\frac{d P^{j}}{d t}= & -\frac{8}{105} \Delta \eta^{2} \frac{c}{G}\left(\frac{G m}{c^{2} r}\right)^{4}\left[v^{j}\left(50 v^{2}-38 \dot{r}^{2}+8 \frac{G m}{r}\right)\right. \\
& \left.-\dot{r} n^{j}\left(55 v^{2}-45 \dot{r}^{2}+12 \frac{G m}{r}\right)\right]
\end{aligned}
$$

Wave Zone Physics: Radiation reaction

Inserting $\mathbf{a}_{\text {RR into the Lagrange planetary equation as a disturbing force and integrating over an orbit }}$

$$
\begin{aligned}
& \frac{d p}{d t}=-\frac{64}{5} \eta c\left(\frac{G M}{c^{2} p}\right)^{3}\left(1-e^{2}\right)^{3 / 2}\left(1+\frac{7}{8} e^{2}\right) \\
& \frac{d e}{d t}=-\frac{304}{15} \eta c \frac{e}{p}\left(\frac{G M}{c^{2} p}\right)^{3}\left(1-e^{2}\right)^{3 / 2}\left(1+\frac{121}{304} e^{2}\right)
\end{aligned}
$$

Radiation reaction causes 2-body orbits to inspiral and circularize
\square The Hulse-Taylor binary pulsar will circularize and merge within 300 Myr ; the double pulsar within 85 Myr
This is short compared to the age of galaxies (5-10 Gyr)
There must be NS-NS binaries merging today (possibly even NS-BH and BH-BH binaries)
\square The inspiral of compact binaries is a leading potential source of GW for interferometers

Outline of the Lectures*

Part 1: Newtonian Gravity

- Foundations
- Equations of hydrodynamics
- Spherical and nearly spherical bodies
- Motion of extended fluid bodies

Part 2: Newtonian Celestial Mechanics

- Two-body Kepler problem
- Perturbed Kepler problem
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Outline of the Lectures*

Part 3: General Relativity

- Einstein equivalence principle
- GR field equations

Part 4: Post-Newtonian \& post-Minkowskian theor

- Formulation
- Near-zone physics
- Wave-zone physics
- Radiation reaction
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

Gravity

Newtonian, Post-Newtonian, Relativistic

Eric Poisson and Clifford M. Will

CAMBRIDGE
*Based on Gravity: Newtonian, post-Newtonian, General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

