Inhomogeneous Cosmological models, what are they good for?

> Roberto A Sussman ICN-UNAM México

Mexican School on Gravitation & Mathematical Physics 1-5 December 2014, Playa del Carmen, QR, México

If the ∧CDM paradigm model fits observations so well, then why bother looking for alternatives ?

Because "dark matter & "dark energy" are "black boxes" whose detection has been very elusive.

 \oplus Because what we have is just

GR+ FLRW + linear perturbations + CDM + Lambda

Observations are well fit

The converse of this implication is NOT (necessarily) true: fitting observations DOES NOT IMPLY the Λ CDM model

as long as we don't know the fundamental nature of "DM" & "DE" there is justification in trying to fit observations with other models or even other gravity theories

The Orthodoxy says

Big

Void

Your gravity theory is wrong Idiot !!

There's no DARK ENERGY Stupid !!

Wednesday, December 3, 14

HOPEFULY, there's no need to solve this controversy in the ring !

A "conservative" set of assumptions to fit cosmic observations outside the Λ -CDM model is to

Keep GR as gravity theory CDM (or some form of Dark Matter) exists BUT assume that

$\Lambda = 0$ (or there is no Dark Energy)

FLRW model with linear perturbations DOES NOT provide an appropriate large scale description of Cosmic Dynamics

The Universe should be inhomogeneous at large scales

Observations should be fit by inhomogeneous GR models WITHOUT assuming $\Lambda > 0$ or any form of DE

This set of assumptions MUST BE TESTED

How to construct Inhomogeneous Cosmological models in general

Take a spacetime manifold (\mathcal{M},g) \cdot satisfies Einstein's equations $G^{ab} = 8\pi T^{ab}$ $\nabla_b T^{ab} = 0$ \cdot Admits a 4-velocity field \mathcal{U}^a

Define a class of Cosmic Observers

Comoving with 4-velocity \mathcal{U}^a "Time derivative" is $\frac{d}{d\tau} = u^a \nabla_a$

Observers define spatial metric $h_{ab} = g_{ab} + u_a u_b$ "Spatial gradients" are $\tilde{\nabla}_a = h_a^b \nabla_b$

General cosmological model is too difficult. We need further assumptions for a CDM dominated universe

- Negligible energy flux and viscous stress
 - Negligible pressure
 - Negligible pressure gradients
 - Negligible vorticity (rotation)
 - Negligible vector & tensor modes (magnetic fields & gravitational waves)

is $\Pi_{ab} \approx 0, \quad q_a \approx 0,$ $\rho \approx mnc^2, \quad p \approx mn \langle v^2 \rangle \ll \rho$ $h_a^b \nabla_b(p) \ll h_a^b \nabla_b(\rho) \quad \Rightarrow \quad \dot{u}_a \approx 0$ $\omega_{ab} \approx 0$

 $H_{ab} pprox 0$ Weyl tensor is electric

 \rightarrow

Dynamics reduces to scalar modes

Inhomogeneous dust universes: dynamical system on

$$\rho, \quad \mathcal{H} = \frac{\Theta}{3},$$

CDM density & Hubble scalar (common to FLRW)

 $E_{ab}, \sigma_{ab},$

Electric Weyl & shear tensors (absent in FLRW) -- deviation from homogeneity

FLRW models follow if $E_{ab} = \sigma_{ab} = 0$

Dynamical System on

$$ho, \ {\cal H}$$

Wednesday, December 3, 14

Hierarchy of known exact solutions

Why inhomogeneous models with $\Lambda = 0$ may fit cosmic observations?

Because large scale observations is information transmitted by NULL GEODESICS through our past light cone, and ALL the latter is very different for inhomogeneous models

Relation d = d(z) only fits data if $\Lambda > 0$ (accelerated expansion)

Free parameters $H_0, \ \Omega_0^m, \ \Omega_0^\Lambda$

LTB model with $\Lambda = 0$

Relation d = d(z) may fit data with $\Lambda =$ 0 for certain density profiles (voids)

Free parameters $H_0(r), \ \Omega_0^m(r), \ \Omega_0^K(r)$

The Hubble diagram & z-distance module relation for single Gpc size void:

FIG. 2: The average distance modulus for an off-center observer in our model. The shaded area represents the RMS deviation from the average across the sky. The data points and error bars are binned data from the Riess et al. Gold Set, while the red dashed line is the corresponding best-fit ΛCDM model.

$$m - M = 5 \log D_L(z)$$
$$D_L(z) \approx \left(\frac{dD_L}{dz}\right)_0 z + \frac{1}{2} \left(\frac{d^2 D_L}{dz^2}\right)_0 z^2$$

Compare coefficients: BOTH FIT

ACDM $\begin{pmatrix} \frac{dD_L}{dz} \end{pmatrix}_0 = \frac{c}{H_0} \\ \frac{1}{2} \left(\frac{d^2 D_L}{dz^2} \right)_0 = \frac{c}{4H_0} \left(2 - \Omega_m + 2\Omega_\Lambda \right)$ LTB with $\Lambda = 0$ $\begin{pmatrix} \frac{dD_L}{dz} \end{pmatrix}_0 = \frac{c}{H_0} \\ \frac{1}{2} \left(\frac{d^2 D_L}{dz^2} \right)_0 = \frac{c}{4H_0} \left[1 + f(\Omega_0^m(r), \Omega_0^k(r)) \right]$

"Swiss Cheese" model: simple pattern of "distributed" inhomogeneities in the Universe

We could be inside of one of these void regions

The cheese holes are the void regions

in the density of matter on an epic scale, could produce the effects that astronomor conventionally attribute to dark energy

How to make Swiss cheese models ?

[THE BIG PICTURE]

A Special Place for Us

In his Hitchhiker's Guide to the Galaxy series of novels, Douglas Adams imagines a torture device that drives people insane by showing them the utter him. In a case of life imitating art, many cosmologists are investigating wheth-Insignificance of their place in the universe. One would be victim emerges

unscathed when it turns out that the universe does, in fact, revolve around er our planet indeed has a special place within the grand scheme of things.

HOMOGENEOUS UNIVERSE: OUR LOCATION IS TYPICAL in the standard view, galaxies are lined up in a spidery pattern, but overall space looks much the same everywhere, and Earth's position is nothing special.

INHOMOGENEOUS UNIVERSE: OUR LOCATION IS SPECIAL Alternatively, the density of matter could vary on large scales, and Earth may lie at or near the center of a relatively less dense region, or void.

Copernicus principle with a larger homogeneity scale

> Spherically symmetric dust underdensity (LTB)

The "cheese" is homogeneous dust (FLRW)

by this simple model

Represent this

FIG. 2: Sketch of our model. The shading mimics the initial density profile: darker shading implies larger denser. The uniform gray is the FRW cheese. The photons pass through the holes as shown by the arrows and are revealed by the observer placed in the cheese

Only Gpc size voids seem to fit SN at higher z

Wednesday, December 3, 14

Spherical inhomogeneity is problematic & restrictive: CMB is almost isotropic, so fitting it with an LTB model requires being "near" the center of the void (fine tuning).

Constraints on amplitude of CMB anisotropies => we must be here

Departure from spherical symmetry suggests that this "center problem" can be removed (or made less binding).

The Kinematic Sunyaev Zeldovich effect

Relation between CMB Temperature distortion and peculiar velocities of galaxy clusters

Observers here should detect a Large Dipole

Conditions here are very different

Gpc size Spherical Voids:

Single void occupies all observable Universe [check]

Must comply with several observational tests:

- SN la
- CMB amplitude & multipoles & BAO
- Initial conditions (LSS) compatible with inflation
- age constraints & H0 measurement
- kinematic S-Z

Not Possible !! LTB models are too simple They lack dynamical freedom

How stringent is the KSZ effect?

Figure 1. An off-centre cluster of galaxies in a void will "observe" CMB photons coming from the last scattering surface from all directions. Due to the higher expansion rate inside the void, photons arriving through the centre (from the right in the figure) will have a larger redshift ($\Delta z_{\rm in}$), than photons arriving directly from the LSS (left, with $\Delta z_{\rm out}$). There is a subdominant effect due to the time-dependent density profile (the solid line corresponds to the current time, while the dot-dashed line to one tenth of the present time). With a larger underdensity at later times, we have $\Delta z_1 > \Delta z_4$, and $\Delta z_2 + \Delta z_3 < 0$, giving an overall difference $\Delta z_1 > \Delta z_2 + \Delta z_3 + \Delta z_4$ or, equivalently, a subdominant dipole with a blueshift towards the centre of the void. The overall effect is a blueshift away from the centre.

Looking the void in the eyes - the kSZ effect in LTB models, Juan Garcıa-Bellido & Troels Haugbolle, JCAP, [arXiv:0807.1326]

See also

The kSZ effect as a test of general radial inhomogeneity in LTB cosmology, Philip Bull, Timothy Clifton, Pedro G. Ferreira, Phys. Rev. D 85, 024002 (2012), [arXiv: 1108.2222v3 [astro-ph.CO]]

It has been tested ONLY on spherical LTB models: it does NOT rule out general inhomogneity (more work needed)

So, let us go beyond spherical voids

FIG. 2: Sketch of our model. gray is the FRW cheese. The in the cheese.

he shading mimics the initial density profile: darker shading implies larger denser. The uniform photons pass through the holes as shown by the arrows and are revealed by the observer placed A Swiss cheese model, but the "inside" of the holes is no longer spherically symmetric

The "cheese" is homogeneous dust (FLRW) Dust underdensities (voids) that are NOT spherically symmetric (Szekeres)

6

Our cosmography at scales < 300 Mpc is obviously NOT spherically symmetric !!!

We try to model this Cosmography with the Szekeres solution

K. Bolejko & R. A. Sussman, Cosmic spherical void via coarse-graining and averaging non-spherical structures, Physics Letters B 697 (2011) 265-27, <u>arXiv:1008.3420</u>

Cross section (tessellation) of the Szekeres density at the "equator"

Coarse-graining cosmic structure by Szekeres solutions

Models of voids & overdensties that "interact"

Figure 4. Density distribution in the considered structure. Upper left panel presents colour coded density distribution of the equatorial cross section (see Fig. 3, bottom panels). Lower left panel presents the vertical cross–section of X = 0, through the considered model. The yellow lines correspond to the density profiles, which are presented on the right side. For detailed description see Sec. 6.

Without spherical symmetry: the "center" position is no longer unique --- NO need to do "fine-tuning"

In Szekeres quasi-spherical geometry ---- 2 possible "center" locations whose position & orientation changes with time:

> K. Bolejko & R. A. Sussman Physics Letters B 697 (2011) 265-270

Positions & orientations change with time

 $A = 4\pi \Phi^2(t, r)$ $\Phi(t, r_b) = 250 \text{ Mpc}$

Geometric center of 2-sphere of radius Phi = 250 Mpc

Local isotropic observer where shear vanishes (r = 0) Integrate null geodesics for the Szekeres Swiss cheese, and verify the fitting of SN Ia & CMB data

Test the KSZ effect with Szekeres

Difficult because there are no "radial null geodesics"

Much harder work !! (likely will not be done)

Current status in the use of inhomogeneous models to explain cosmic acceleration.

Spherical Gpc voids are practically ruled out.

Szekeres voids improve the fitting of observations but perhaps not much (must be tested).

More general inhomogeneity requires 3d numerical codes & (likely) include small corrections from nonadiabatic and vector/tensor modes.

There is a consensus in the community that inhomogeneity is no longer favored.

There are other ideas "floating" in the literature

Include radiation. Effect: modifies initial conditions, may have effects on CMB fitting

Woei Chet Lim, Marco Regis, Chris Clarkson, JCAP 10 (2013) 010 [arXiv:1308.0902]

Perturbations on an LTB background. Effect: allows for a more consistent probing of inhomogeneity

February et al, Class. Quantum Grav. 31 (2014) 175008

inhomogeneity in velocities instead of in densities?

Consider effects of peculiar with respect to the Hubble flow. Effects: KSZ becomes more nuanced

David L Wiltshire et al, Hubble flow variance and the cosmic rest frame Phys. Rev. D 88, 083529 (2013)

C Tsagas, Peculiar motions, accelerated expansion and the cosmological axis, Phys. Rev. D 84, 063503 (2011)

other ideas ?

Consider averages & coarse graining.

David L.Wiltshire What is dust? - Physical foundations of the averaging problem in cosmology Class.Quant.Grav.28:164006, 2011 arXiv:1106.1693

If inhomogeneous models cannot explain cosmic acceleration, then why do we need them?

We have become too fixed on the idea that considering inhomogeneous models IMPLIES refuting Dark Energy or Λ

However: the Universe can still be inhomogeneous with $\Lambda > 0$

NOTICE: the fact that $\Lambda > 0$ does NOT imply a Lambda-CDM Universe

Inhomogeneous models (with $\Lambda > 0$) can still be useful for tackling many problems

***** Check if observations can be fit with an inhomogeneous model with $\Lambda > 0$ (a Λ -LTB model). Marra et al:

Testing the Copernican principle by constraining spatial homogeneity, Wessel Valkenburg, Valerio Marra, Chris Clarkson, Mon.Not.Roy.Astron.Soc. 438 (2014) L6-L10 [arXiv:1209.4078v3 [astro-ph.CO]

✓ Observational constraints on the LLTB model, Valerio Marra, Mikko Paakkonen, JCAP12(2010)0 [arXiv1009.4193]

***** Observational effect of inhomogeneities: they give the false "impression" of a varying Λ . Romano et al:

Non perturbative effects of primordial curvature perturbations on the apparent value of a cosmological constant, Antonio Enea Romano, Sergio Sanes, Misao Sasaki, Alexei A. Starobinsky EPL, [arXiv:1311.1476]

* Theoretical issues: non-locality and averaging,

***** Better understanding of alternative gravity theory

Wednesday, December 3, 14

* Provide a theoretical framework for non-linear perturbations

Examine relativistic & non-linear effects in structure formation and growth suppression

Exact solutions as "exact" perturbations: look at the following hierarchy

Hidalgo & Sussman, work in progress

Propose a solution based on assuming "EXACT" perturbation forms:

$$\rho = \rho_q \left[1 + \delta^{(\rho)} \right], \qquad \mathcal{H} = \mathcal{H}_q \left[1 + \delta^{(\mathcal{H})} \right]$$

where: $\left\{ \,
ho_q \,, \, \mathcal{H}_q \,
ight\}$ are SZEKERES scalars that satisfy FLRW dynamics

and: $\left\{ \, \delta^{(
ho)} \, , \, \delta^{(H)} \,
ight\}$ are obtained from the I+3 system

exact "perturbations"

Look at the dynamics of these perturbations & compare with "standard" perturbations The perturbations compare local covariant scalars with their weighed average that satisfies FLRW dynamics

We transform Szekeres dynamics into evolution equations for EXACT & COVARIANT perturbations on FLRW:

Growth suppression factor

Linear perturbations on FLRW

The growth suppression factor defined for linear perturbations (in an isochronous gauge) on a dust FLRW background with $\Lambda > 0$ or $\Lambda = 0$ is

$$f = \frac{d(\ln \delta)}{d(\ln \bar{a})} = \frac{(\ln \delta)}{(\ln \bar{a})} = \frac{\dot{\delta}/\delta}{\dot{\bar{a}}/\bar{a}},\tag{1}$$

$$\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}}, \qquad \frac{\bar{a}}{\bar{a}} = \frac{\Theta}{3} = \bar{H}, \tag{2}$$

where \bar{a} , $\bar{\rho}$, \bar{H} are the scale factor, density and Hubble scalar of the FLRW background and δ is the density contrast satisfying the linear equation

$$\ddot{\delta} + 2\bar{H}\dot{\delta} - 4\pi\bar{\rho}\delta = 0. \tag{3}$$

Exact dust perturbations (LTB & Szekeres)

$$\ddot{\delta}_{q}^{(\rho)} - \frac{2\left[\dot{\delta}_{q}^{(\rho)}\right]^{2}}{1 + \delta_{q}^{(\rho)}} + 2H_{q}\dot{\delta}_{q}^{(\rho)} - 4\pi\rho_{q}\delta_{q}^{(\rho)}(1 + \delta_{q}^{(\rho)}) = 0,$$

Relation between exact perturbations vs curvature & kinematic invariants

 $\sigma_{ab} = \Sigma \mathbf{e}_{ab}, \qquad \Sigma = -(H - H_q) = -H_q \delta_q^{(H)},$ $E_{ab} = \Psi_2 \mathbf{e}_{ab}, \qquad \Psi_2 = \frac{4\pi}{3} (\rho - \rho_q) = \frac{4\pi}{3} \rho_q \delta_q^{(\rho)},$ $\delta_q^{(\rho)} = -\frac{\phi}{1 + \phi}, \qquad \phi = \frac{6\Psi_2}{\mathcal{R}},$ $\delta_q^{(H)} = \frac{\xi}{1 - \xi}, \qquad \xi = \frac{\Sigma}{H},$

 ${\cal R}$ Ricci Scalar Ψ_2 Weyl conformal invariant

Invariant meaning of growth suppression factor

$$f=-\frac{3\,\xi}{\phi}=-\frac{\Sigma/H}{2\Psi_2/\mathcal{R}},$$

Ratio: anisotropy of expansion vs Weyl/Ricci curvature

Numerical results for 50 Mpc LTB voids

A introduces a strong suppression effect, but may not be noticeable in our cosmic time t = t0(more discussion needed)

YOUR

ΑΤΤΕΝΤΙΟΝ