Detección Indirecta de Materia Oscura

Alma Gonzalez Cátedra CONACYT Universidad de Guanajuato

Materia Oscura

Definición básica

- Fría
- No colisional
- Neutra
- Interactua solo gravitacionalmente

Algunos modelos atractivos:

• Extensiones al Modelo Estándar (ME) de Partículas:

- Débilmente interactuante
- Auto-interacciones

Algunos modelos atractivos: -WIMPS

-Neutrinos esteriles

- Partículas tipo axión (campos escalares)

Detección de Materia Oscura

A. A. Abdo et al. 2010

Detección indirecta

 Detección de los productos de la aniquilación o decaimiento de materia oscura en partículas del ME.
 Galaxias enanas esferoidales (dSph's)
 Centro Galáctico Cúmulos de Galaxias

Detección muy-indirecta

 Efecto de la aniquilación/decaimiento de materia oscura en observables cosmológicas: CMB, Reionización,LSS.

Detección indirecta

Estrephianimal de Cinana y Denalisje

Detección indirecta

Dinámica de galaxias para acotar la distribución de Materia Oscura

Distribución de Materia Oscura

Galaxias enanas

Centro Galáctico

Gregory D. Martinez 2013

Detección indirecta en dSph's

Ackerman et. al. 2014

J-factor en presencia de un agujero negro...

$$\dot{n_{\chi}} = \langle \sigma v \rangle n_{\chi}^2$$
 $n_{\chi} = \frac{n_{\chi}}{1 + n_{\chi} \Delta t}$

Core debido a la aniquilación

$$p_{\rm max} = 3 \times 10^{18} \left(\frac{m_{\chi}}{100 {\rm GeV}}\right) \left(\frac{10^{-26} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma v \rangle}\right) M_{\odot} {\rm kpc}^{-3}$$

 $J_{\Delta\Omega} = \int_{\Delta\Omega} \int_{los} \rho^2(r(l,\theta), \langle \sigma v \rangle, m_{\chi}) \, dl d\Omega$

Usamos las restricciones de FERMI como base

$$\langle \sigma v \rangle J = \langle \sigma v \rangle_{bh} J_{bh} \left(\langle \sigma v \rangle_{bh}, m_{\chi} \right) \quad \forall \quad m_{\chi}.$$

resolvemos para $\langle \sigma v \rangle_{bh}$

AXGM, S.Profumo, F. Queiroz 2014

Todas la galaxias enanas juntas

Fermi current analysis cover some of the scenarios with IMBHs.

AXGM, S.Profumo, F. Queiroz 2014

Detección indirecta en CG

Excesso en 1-3 GeV

Otras explicaciones

CONACYT

UNIVERSIDAD

DE GUANAJUATO

Carlson 2016. No hay exceso, mejores modelos de emisión difusa.

3.5 KeV line (73) Cumulos de Galaxias

No hay evidencia en cúmulos individuales (Hitomi Collaboration 2016)

> Consistente con lineas de KXVIII a 3.48 y 3.52 keV (Jeltema.Profumo 2014)

Nueva generación de detectores

- * Explorarán el rango de MeV y un empales con FERMI:
- * GAMMA-400 (2020) ~ 100 MeV 3 TeV
- Propuestas para eliminar el gap entre 0.2 MeV ~ 100 MeV: e ASTROGAM, GRIPS, PANGU, ACT, and others.

V. Tatischeff et al. 2016

J. Greiner, K., et al. 2011

X. Wu, et al. 2014

S.E.Boggs et al. 2006

Historia Térmica y CMB

* Aniquilación de MO inyecta energía en el medio intergaláctico

Energy injected !

$$\frac{dE}{dtdV} = \rho_c^2 c^2 \Omega_\chi^2 (1+z)^6 \frac{\langle \sigma v \rangle}{m_\chi}$$

* No toda la energía se absorbe

$$\frac{dE}{dtdV}_{\text{absorbed}} = f(z) \frac{dE}{dtdV}_{\text{injected}}$$

* Función de eficiencia. f(z)

Mathematica: http://nebel.rc.fas.harvard.edu/ epsilon

Python: https://github.com/JavierReynoso/ feff.git

T. R. Slatyer, Phys. Rev. D93, 023527 (2016), 1506.03811.

Gamma-rays from DM

 $m_{\pi^0} \lesssim m_\chi \lesssim 1 \text{ GeV}$

* 6 canales de aniquilación

$$\chi \chi \to \gamma \gamma$$

$$\chi \chi \to \gamma \pi^{0}$$

$$\chi \chi \to \pi^{0} \pi^{0}$$

$$\chi \chi \to \bar{l}l \ (l = e, \mu)$$

$$\chi \chi \to \pi^{+} \pi^{-}$$

Espectro de energía $\frac{dN}{dE_{\gamma\gamma}} = 2\delta(E - m_{\chi})$ $\frac{dN}{dE_{\gamma\pi^{0}}} = \delta\left(E - \left(m_{\chi} - \frac{m_{\pi^{0}}^{2}}{4m_{\chi}}\right)\right) + \frac{2}{m_{\chi} - \frac{m_{\pi^{0}}^{2}}{4m_{\chi}}}$ $\frac{dN}{dE_{\pi^{0}\pi^{0}}} = \frac{4}{\sqrt{\frac{s}{4} - m_{\pi^{0}}^{2}}}$ $\frac{dN}{dE_{\bar{l}l}} = \frac{\alpha}{\pi} \left(\frac{1 - (1 - y)^{2}}{y}\right) \left(\ln \frac{s(1 - y)}{m_{l}^{2}}\right)$

Thermal history and CMB constraints

Historia Térmica y CMB

Detección

$$\phi = J(\Delta \Omega) \cdot \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \int dE \frac{dN}{dE\gamma}$$

 $\log_{10}(J_{\text{Draco}}/\text{GeV}^2\text{cm}^{-5}) = 19.05^{+0.22}_{-0.21}[10]$

$$\log_{10}(J_{\rm GC}/{\rm GeV}^2{\rm cm}^{-5}) \sim 19 - -23[9]$$

[9] V. Gammaldi, V. Avila-Reese, O. Valenzuela, and A. X. Gonzales-Morales, Phys. Rev. D94, 121301 (2016), 1607.02012.
[10] K. K. Boddy, K. R. Dienes, D. Kim, J. Kumar, J.-C. Park, and B. Thomas, Phys. Rev. D94, 095027 (2016), 1606.07440.

Detección

$$\begin{split} N_s \sim N_\sigma \sqrt{N_b} & N_\sigma = 5 \quad \text{Construinos un detector hipotético} \\ & \sim \text{eASTROGAM} \\ N_s = \phi \cdot T_{\text{obs}} \cdot A_{\text{eff}} & N_b \propto \int dE \frac{d\phi_b}{dE} \\ & \left\langle \sigma v \right\rangle > 10 \sqrt{N_b} \frac{1}{\int_{E^-}^{E^+} dE \frac{dN}{dE}} \frac{4\pi}{A_{\text{eff}} T_{\text{obs}} J} m_\chi^2 \end{split}$$

Draco

[12] E. Di Valentino et al. (CORE) (2016), 1612.00021.

[13] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), 1502.01589.

[12] E. Di Valentino et al. (CORE) (2016), 1612.00021.

[13] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), 1502.01589.

J. Reynoso, AXGM, S. Profumo, 2017 (Diapositvas J. Reynoso)

Draco

[12] E. Di Valentino et al. (CORE) (2016), 1612.00021.

[13] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), 1502.01589.

J. Reynoso, AXGM, S. Profumo, 2017 (Diapositvas J. Reynoso)

GC

[12] E. Di Valentino et al. (CORE) (2016), 1612.00021.

[13] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), 1502.01589.

J. Reynoso, AXGM, S. Profumo, 2017 (Diapositvas J. Reynoso)

GC

Trabajo a futuro

- Restricciones en reionización con observaciones HI-21cm.
- Restricciones a partir de objetos "raros" como cúmulos globulares que parecen galaxias dSph's.
- Cotas que provienen de LSS con Surveys de galaxias (Modelos con interacciones).

Gracias

